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Abstract: Using the fractionalmomentmethod it is shown that,within theHartree–Fock
approximation for the disordered Hubbard Hamiltonian, weakly interacting Fermions
at positive temperature exhibit localization, suitably defined as exponential decay of
eigenfunction correlators. Our result holds in any dimension in the regime of large
disorder and at any disorder in the one dimensional case. As a consequence of our
methods, we are able to show Hölder continuity of the integrated density of states with
respect to energy, disorder and interaction.

1. Introduction

Our goal in this note is to study Anderson localization in the context of infinitely
many particles. We shall formulate our results for the disordered Hubbard model within
Hartree–Fock theory. However, as the techniques involved are quite flexible, we expect
that similar statements can be made in a more general framework, under appropriate
modifications of the decorrelation estimates in Sect. 8.1. The (deterministic) Hubbard
model under Generalized Hartree–Fock Theory has been discussed (at zero and positive
temperature) by Lieb, Bach and Solovej in [22] but, to the best of our knowledge, the
localization properties of the disordered version of this model remained unexplored,
even in the context of restricted Hartree–Fock theory, up to the present work. The main
difficulty lies in the addition of a self-consistent effective field, whichwill be random and
non-local by nature, to a random Schrödinger operator. The conclusion of this note can
be summarized as follows: under technical assumptions, the results on (single-particle)
Anderson localization obtained in the non-interacting setting in the regimes of large dis-
order (in dimension d ≥ 2) and at any disorder (in dimension d = 1), remain valid under
the presence of sufficiently weak interactions. More specifically, in the regime of strong
disorder this is accomplished in any dimension by Theorem 2 below. Theorem 1 contains
the improvement in dimension one, where any disorder strength leads to localization,
provided the interaction strength is taken sufficiently small. Ourmethods contain various
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bounds on the fluctuations of the effective interaction which are interesting in their own
right and potentially useful on different contexts. To exemplify this, we prove Hölder
regularity of the integrated density of states (IDS) with respect to various parameters by
adapting arguments of [18], which is the content of Theorem 3.

1.1. Discussion of the results and main obstacles. Mathematically, our setting can be
understood as an Anderson-type model Hω = H0 +λUω where the values of the random
potential U at different sites are correlated in a highly non-local and self-consistent
fashion. The correlations are governed by a nonlinear function of Hω, as explained on
Sect. 3. In comparison to the recent result on Hartree–Fock theory for lattice fermions in
[14], achieved via multiscale analysis, we use the fractional moment method to establish
exponential decay of the eigenfunction correlators at large disorder in any dimension but
also at any disorder in dimension one. In particular, in the above regimes we obtain for
any t > 0, exponential decay (on expectation) for thematrix elements of theHamiltonian
evolution, whichmeans that, on average, |〈m|e−i t H |n〉| decays exponentially on |m −n|.

The result of complete localization in dimension one in such interacting context is
new and deserves attention on its own. Its main technical difficulty lies in the non-local
correlations of the potential, which means that standard tools such as Furstenberg’s
theorem and Kotani theory are not available. Moreover, a large deviation theory for the
Green’s function is a further obstacle to establishing dynamical localization even if one
obtains uniform positivity of the Lyapunov exponent. We overcome these challenges
using ideas of [5, Chapter 12], where arguments reminiscent of the proof of the main
result in [26] are presented. We then obtain positivity of the Lyapunov exponent at any
disorder using uniform positivity for the Lyapunov exponent of the Anderson model,
combinedwith an explicit boundonhow this quantity depends on the interaction strength,
seeTheorem8.When it comes to establishing a large deviation theorem, ourmodification
of the argument in [5, Theorem 12.8] relies on quantifying the decorrelations of the
effective potential, which is presented on Lemma 11 in the form of a strong mixing
statement. It is worth clarifying that, since our proof is based on fractional moments,
we have not established localization in one dimension for rough potentials as in [25].
Moreover, the gap assumption in [14] is replaced by working at positive temperature
thus our results do not apply to Hartree–Fock ground states.

1.2. Hartree–Fock theory. Hartree–Fock theory has been widely applied in computa-
tional physics and chemistry. It also has a rich mathematical literature which goes well
beyond the scope of random operators, see for instance [20–24] and references therein.

1.3. Background on localization for interacting systems. The main results of this note
lie in between the vast literature on (non-interacting) single particle localization and
the recent efforts to study many particle systems, as in the case of an arbitrary, but
finite, number of particles in the series of works by Chulaevsky and Suhov [10–12] and
Aizenman and Warzel [6]. In comparison to the later, we only seek for a single-particle
localization result but allow for infinitely many interactions, which occur in the form
of a mean field. In comparison to the recent developments on spin chains, as the study
of the XY spin chain in [19] and the droplet spectrum of the XXZ quantum spin chain
in [16] and [8], the notions of localization for a single-particle effective Hamiltonian
are more clear and can be displayed from pure point spectrum to exponential decay of
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eigenfunctions and exponential decay of eigenfunction correlators. The later is agreed
to be the strongest form of single particle localization and it is what we accomplish in
this manuscript. If fact, dynamical localization in the form of Theorems 1 and 2 implies
pure point spectrum via the RAGE theorem (see [31, Proposition 5.3]) and exponential
decay of eigenfunctions, see [5, Theorem 7.2 and Theorem 7.4].

2. Definitions and Statement of the Main Result

2.1. Notation. In what follows, Zd will be equipped with the norm |n| = |n1| + · · ·
+|nd | for n = (n1, . . . , nd). Given a subset � ⊂ Z

d , we define �2(�) := {ϕ : � →
C | ∑n∈� |ϕ(n)|2<∞} and, forϕ ∈ �2(�),we let‖ϕ‖�2(�):=

(∑
n∈� |ϕ(n)|2 < ∞})1/2.

Throughout this note, η will be a positive constant and Fβ,κ will denote the Fermi-Dirac
function at inverse temperature β > 0 and chemical potential κ:

Fβ,κ (z) = 1

1 + eβ(z−κ)
. (2.1)

We shall omit the dependence on the above parameters whenever it is clear from the
context. For many of our bounds, the specific form of (2.1) is not important and F could
denote a fixed function which is analytic on the strip S = {z ∈ C : |Imz| < η} and
continuous up to the boundary of S, in which case we define ‖F‖∞ := supz∈S |F(z)|.
For the function Fβ,κ in (2.1) one can take η = π

2β . However, to obtain robust results
which incorporate delicate fluctuations, further properties of the Fermi-Dirac function
are necessary. Namely, in Sect. 8.1 we use the the fact that t F(t) is bounded as t → ∞
and that t (1 − F(t)) is bounded t → −∞. These properties will also play a role in the
decoupling estimates needed in the proof of Theorem 1 but could be relaxed if one is
only interested in the large disorder proof of Theorem 2 for a specific distribution with
heavy tails (for instance, the Cauchy distribution).

Our main goal is to study localization properties of non-local perturbations of the
Andersonmodel HAnd := −�+λVω which naturally arise in the context ofHartree–Fock
theory for the Hubbard model. The random potential Vω is the multiplication operator
on �2(Zd) defined as

(Vωϕ) (n) = ωnϕ(n) (2.2)

for all n ∈ Z
d and {ωn}n∈Zd are independent, identically distributed random variables on

which we impose technical assumptions described in the next paragraph. The hopping
operator � is the discrete Laplacian on Zd , defined via

(�ϕ) (n) =
∑

|m−n|=1

(ϕ(m) − ϕ(n)) . (2.3)

The proofs of localization via fractional moments usually do not require the hopping
to be dictated by �; below we will replace � by a more general operator H0 whose
matrix elements decay sufficiently fast away from the diagonal. It is technically useful
to formulate some of our results in finite volume, i.e, we will work with restrictions of
the operators to �2(�) but the estimates obtained will be volume independent, meaning
that all the constants involved are independent of � ⊂ Z

d . We will use 1� to denote
the characteristic function of � as well as the natural projection P� : �2(Zd) → �2(�).
With these preliminaries we are ready to define the Schrödinger operators studied in this
work.
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2.2. Definition of the operators. Let HAnd = H0 + λVω be the Anderson model on
�2

(
Z

d
)
where:

(A1)

ζ(ν) := sup
m

∑

n∈Zd

|H0(m, n)|
(

eν|m−n| − 1
)

<
η

2
, for some ν > 0 fixed.

(A2) Vω is defined as in (2.2) and the random variables {ω(n)}n∈Zd are independent,
identically distributed with a density ρ:

P (ω(0) ∈ I ) =
∫

I
ρ(x) dx, for I ⊂ R a Borel set .

(A3) We also assume that supp ρ = R with

ρ(x)

ρ(x ′)
≥ e−c1(ρ)|x−x ′|(1+c2(ρ)max{ |x |,|x ′| }) (2.4)

for some c1(ρ) > 0 and c2(ρ) ≥ 0 and any x, x ′ ∈ R.

Before stating the remaining assumptions on ρ, we need to introduce some notation.
Assume that ρ satisfies (2.4). Let

ρ(x) = ρ(x)
∫ ∞
−∞ ρ(α)h(x − α) dα

(2.5)

where

h(x) =
⎧
⎨

⎩

e−cρ |x | if c2(ρ) = 0.

e−cρ |x |2 if c2(ρ) > 0.
(2.6)

(A4) The function ρ is bounded for some cρ > 0.

Remark. The technical assumptions (A3) − (A4) will be needed for the large disorder
result of Theorem 2 below. They include, for instance, the Cauchy distribution, the
Gaussian, and the exponential distribution ρ(v) = m

2 e−m|v|.

The above assumptions will suffice to show localization at large disorder on The-
orem 2 below. To show complete localization in dimension one, Theorem 1 will also
require a moment condition on ρ, which is the following.

(A5) For some ε > 0 and some cρ > 0,
∫ ∞
−∞ |x |ερ(x) dx < ∞.

Remark. The assumption (A5) covers, for example, the Gaussian and the exponential
distributions but it does not cover the Cauchy or other distributionwith heavy tails. It will
be necessary for the one dimensional result of Theorem 1 below. More specifically, this
requirement will imply a moment condition which will be needed to relate the Green’s
function to the Lyapunov exponent, see Sect. 5 Eq. (5.22).

Remark. The specific bound on ζ(ν) is necessary to ensure that the Combes–Thomas
bound |G(m, n; E + iη)| ≤ 2

η
e−ν|m−n| holds [5, Theorem 10.5], where G(m, n; z)

denotes 〈m|(H − z)−1|n〉, whenever this quantity is defined.
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Define the operator HHub, acting on �2
(
Z

d
) ⊕ �2

(
Z

d
)
by

HHub =
(

H↑(ω) 0
0 H↓(ω)

)

:=
(

H0 + λVω + gV↑(ω) 0
0 H0 + λVω + gV↓(ω)

)

(2.7)

where the operators H↑(ω) and H↓(ω) act on �2
(
Z

d
)
and the so-called effective poten-

tials are defined via
(

V↑(ω)(n)

V↓(ω)(n)

)

=
( 〈n|F(H↓)|n〉

〈n|F(H↑)|n〉
)

. (2.8)

Note that the above equations only define H↑(ω) and H↓(ω) implicitly. Existence and
uniqueness of V↑ and V↓ will be shown in Sect. 10.1 via a fixed point argument. The
model (2.7) is usually referred to as the Hartree approximation, due to the absence
of exchange terms. In Sect. 3 below we will show that the terminology Hartree–Fock
approximation is justified when g < 0, which represents a repulsive interaction.

The Hubbard model is schematically represented in the following picture. The black
(horizontal) edges represent hopping between sites and the red (vertical) edges represent
the effective interaction between the two layers, which are identical copies of Zd .

(0,0)

n↓

n↑

2.3. Main theorems. Fix an interval I ⊂ R and define the eigenfunction correlator
through

QI (m, n) := sup
|ϕ|≤1

(|〈m|ϕ(H↑)|n〉| + |〈m|ϕ(H↓)|n〉|) . (2.9)

The operators H↑ and H↓ are defined as in (2.7) and the supremum is taken over Borel
measurable functions bounded by one and supported on the interval I . In case I = R

we simply write Q(m, n). Our first result is the following:

Theorem 1. In dimension d = 1, let H0 = −� and assume that the conditions (A1) −
(A5) hold. For any λ > 0 and any closed interval I ⊂ R , there is a constant g1 > 0
such that whenever |g| < g1 we have

E (QI (m, n)) ≤ Ce−μ1|m−n|. (2.10)

for any m, n ∈ Z
d and positive constants μ1 = μ1(λ, ν, η, I ), C(η, g, λ, ‖F‖∞, I ).

Theorem 2. Suppose that the conditions (A1) − (A4) hold. For any dimension d ≥ 1,
there exists a constant gd = g(d, η, ‖F‖∞, ν) such that, whenever |g| < gd , there is a
positive constant λ0(g) for which

E (Q(m, n)) ≤ Ce−μd |m−n|. (2.11)

holds for λ > λ0(g), any m, n ∈ Z
d and some positive constants μd = μ(d, λ, g, ν, η),

C(η, ν, d, g, λ, ‖F‖∞).
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Remark. It will follow from the proof that the constant gd in Theorem 2 can be taken

proportional to
η(1−e−ν)

d

‖F‖∞ .

Remark. The constant g1 in Theorem 1 can be taken equal to be the minimum among

a factor proportional to
η(1−e−ν)

‖F‖∞ and the upper bound obtained in Corollary 9, which
also depends on the lower bound for the Lyapunov exponent of the Anderson model on
�2 (Z).

Recall the definition of the integrated density of states for an ergodic operator H :

NH (E) = lim|�|→∞
TrP(−∞,E)(1� H1�)

|�| . (2.12)

For the definition of ergodic operator onemay consult [5,Definition 3.4]. Inwhat follows,
we denote by N0(E) the corresponding quantity for the free operator H0 defined above,
which is assumed to be ergodic for the result below, where we shall be concerned with
the small disorder regime and aim for bounds which do not depend upon λ as λ → 0.

Theorem 3. Assume that (A1) − (A2) hold with x2ρ(x) bounded and that g2 < λ . Fix
a compact interval K ⊂ R where E �→ N0(E) is α0-Hölder continuous and a bounded
interval J ⊂ R. The integrated density of states Nλ,g(E) of HHub is Hölder continuous
with respect to E and with respect to the pair (λ, g). More precisely:

(I DS1) For E, E ′ ∈ K

|Nλ,g(E) − Nλ,g(E ′)| ≤ C(α, K )|E − E ′|α (2.13)

for α ∈ [0, α0
2+α0

] and C(α, K ) independent of λ and g.

(I DS2) If λ, λ′ ∈ J , we have that, for any E ∈ K , α ∈ [0, α0
2+α0

] and β ∈ [0, 2
α+3d+4 ],

|Nλ,g(E) − Nλ′,g′(E)| ≤ C(α0, d, J, K )
(|λ − λ′|β + |g − g′|β)

. (2.14)

3. Motivation

We shall explain the motivation for the above choice of the effective potential. We are
only going to outline the derivation of the self-consistent equations as this is a standard
topic, see, for instance, [27, Chapter 3].

Let � ⊂ Z
d be a finite set. Following the notation of [22], we use � to denote a one

particle density matrix, i.e, a 2 × 2 matrix whose entries are operators on �2 (�) and
which satisfies 0 ≤ � ≤ 1. We then write

� :=
(

�↑ �↑↓
�↓↑ �↓

)

where �↓↑ = �
†
↑↓.

As in [22, Equation 3a.8], the pressure functional P(�) is defined as

− P(�) = E(�) − β−1S(�). (3.1)

The energy functional is

E(�) = Tr (H0 − κ + λVω) � + g
∑

n

〈n|�↑|n〉〈n|�↓|n〉, (3.2)
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where we have identified H0 − κ + λVω with

(
H0 − κ + λVω 0

0 H0 − κ + λVω

)

.

The entropy is given by

S(�) = −Tr (� log� + (1 − �) log(1 − �)) . (3.3)

Generally, the choice of energy functional (3.2) is referred to asHartree approximation as
exchange terms are neglected. However, in the case of a repulsive interaction among the
particles, it is easy to prove that such exchange terms do not affect the choice ofminimizer
for −P(�) and the process may be referred to as the Hartree–Fock approximation.
Indeed, the Hartree–Fock energy for the repulsive interaction would incorporate the term
−g|〈n|�↑↓|n〉|2, which is non-negative when g < 0. Thus, for repusive interactions,
off-diagonal terms can be disregarded for minimization purposes, see the analogous
discussion in [22, Section 4a]. The minimizer � of −P(�) exists since � is a finite set.
Moreover, it satisfies

〈n|�↑|n〉 = 〈n| 1

1 + eβ(H0−κ+λVω+Diag(�↓))
|n〉. (3.4)

〈n|�↓|n〉 = 〈n| 1

1 + eβ(H0−κ+λVω+Diag(�↑))
|n〉. (3.5)

Thus, the effective Hamiltonian on �2 (�) ⊕ �2 (�) is determined by

H�
ω :=

(
H0 + λω(n) + gV �↑ (n) 0

0 H0 + λω(n) + gV �↓ (n)

)

V �↑ (ω)(n) := 〈n| 1

1 + eβ(H0−κ+λω+gV↓)
|n〉 (3.6)

V �↓ (ω)(n) := 〈n| 1

1 + eβ(H0−κ+λω+gV↑)
|n〉. (3.7)

It will follow from arguments given below that if �R is an increasing sequence with
∪R∈N�R = Z

d then, for fixed m ∈ Z
d ,

lim
R→∞ V �R

eff (m) = Veff(m) (3.8)

and this fact ensures that, for localization purposes in the Hubbard model, it suffices to
study HHub and its finite volume restrictions.

4. Outline of the Proof of Theorem 2

We now want to outline the proof of the Theorem 2 in the related model where HHub is
replaced by the operator

H = H0 + λω(n) + gVeff(n) (4.1)

acting on �2
(
Z

d
)
with

Veff(n) = 〈n| 1

1 + eβ(H0+λω+gVeff )
|n〉. (4.2)
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In this case, the correlator is defined as

QI (m, n) := sup
|ϕ|≤1

|〈m|ϕ(H)|n〉|. (4.3)

where ϕ is Borel measurable and supported on I .
The above operator exhibits the main mathematical features of the Hubbard model,

namely: the effective potential is defined self-consistently as a non-local and non-linear
function of H . Thus, it is natural to first illustrate our methods here. For now let’s assume
the existence and uniqueness of Veff are proven as well as its regularity with respect to
{ω(n)}n∈Zd . Combined with estimates on the derivatives of Veff , the above facts form
a significant portion of the proof which is developed in Sects. 6 and 7. The, somewhat
straightforward, extension of the proof to HHub will be explained in Sect. 10. A feature
which Theorems 1 and 2 have in common is that the eigenfunction correlator decay will
be achieved via the Green’s function of H� = 1� H1�, which is H restricted to a finite
set � ⊂ Z

d . Let

G�(m, n, z) = 〈m|(H� − z)−1|n〉. (4.4)

Using the basics of the fractional moment method, which dates back to [1,4], we aim at
showing that, for some s ∈ (0, 1),

E

(∣
∣
∣G�(m, n; z)

∣
∣
∣
s) ≤ Ce−μd |m−n| (4.5)

holds uniformly in z ∈ C
+, with positive constants C = C(d, s, g, λ, ν, η, ‖F‖∞) and

μ(d, s, g, λ, ν, η, ‖F‖∞) independent of the volume |�|. In this context, the Green’s
function decay expressed by Eq. (4.5) implies

E (Q(m, n)) ≤ C ′e−μ′
d |m−n| (4.6)

for some exponent μ′
d = μ′(d, s, g, λ, ν, η, ‖F‖∞) > 0 and C ′ = C ′(η, ν, d, g, λ, s,

‖F‖∞). This iswell known and explained in great generality, for instance, in [2, Theorem
A.1].

Another aspect which is shared by the proofs of Theorems 1 and 2 is that the starting
point to obtain (4.5) will be the following a-priori bound where we let

Uω(n) = ω(n) +
g

λ
Veff(n, ω). (4.7)

be the “full” potential at site n and E{U (m),U (n)} denotes the conditional expectation with
respect to {U (m), U (n)} at specified values of the remaining random variables.

Lemma 4. Given a finite set � ⊂ Z
d , there exist a constant CAP = CAP(η, ν, d, g, λ, s,

‖F‖∞), independent of �, such that

E{U (m),U (n)}
(∣
∣
∣G�(m, n; z)

∣
∣
∣
s) ≤ CAP (4.8)

holds for any m, n ∈ �, including the case m = n.

Lemma 4 follows from Lemma 5 below, see [5, Corollary 8.4]. From now on, to keep
the notation simple, we drop the dependence on ω in the new variables {U (n)}n∈�. Note
thatU (n) andU (m) are correlated for all values of m and n. The strategy is to show that,
for g sufficiently small, they still behave as if they were independent in the following
sense:
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Lemma 5. Fix � ⊂ Z
d finite and n0 ∈ �. The conditional distribution of U (n0) = u

at specified values of {U (n)}n∈�\{n0} has density ρ�
n0 . Moreover, under assumptions

(A1) − (A4) we have that

sup
ω

sup
�

sup
n0∈�

sup
u∈R

ρ�
n0(u) < ∞. (4.9)

If, additionally, assumption (A5) holds then ρ�
n0(u) ∈ L1 (R, |x |εdx), with moments

uniformly bounded with respect to ω,� and n0.

The proof of the above result is detailed in Sect. 9; it requires exponential decay of

| ∂Veff (n)
∂ω(m)

| and | ∂2Veff (n)
∂ω(m)ω(l) | with respect to |m − n| and |m − n| + |l − n|, respectively. The

need for this decay is the main reason to require β > 0 or, in other words, to require
analiticity of F on a strip. The intuitive explanation for Lemma 5 is that the random
variables U (n) and U (n0) decorrelate in a strong fashion as |n − n0| becomes large.
Lemma 5 implies (4.5) for any 0 < s < 1 as long as λ is taken sufficiently large, see [5,
Theorem 10.2].

The proof of Theorem 1 will require additional efforts involving tools which are
specific to one dimension, which we shall comment on below.

5. One Dimensional Aspects: Strategy of the Proof of Theorem 1

The argument for provingTheorem1 follows closely the approach in the proof of theorem
12.11 in [5], which we now recall.

5.1. Main ideas in the i.i.d case. In the reference [5, Chapter 12] Green’s function decay
is described in terms of the moment generating function, defined by

ϕ(s, z) = lim|n|→∞
lnE(|G(0, n; z)|s)

|n| . (5.1)

The existence of the above quantity for all z ∈ C
+ and s ∈ (0, 1) and its relationship to

the Lyapunov exponent are a consequence of Fekete’s lemma [5, Proposition 12.9]:

Lemma 6 (Fekete). Let {an}n∈N be a sequence of real numbers such that, for every pair
(m, n) of natural numbers,

an+m ≤ an + am (5.2)

Then, α = limn→∞ an
n exists and equals infn∈N an

n .

It is an elementary observation that if, instead, the sequence {an}n∈N satisfies an+m ≤
an +am +C then the above result applies to bn := an +C and that an analogous statement
holds for superadditive sequences, which satisfy (5.2) with the inequality reversed. In
the i.i.d. context, the sequence an = lnE (|G(0, n; z)|s) is shown to be both subbaditive
and superadditive, meaning that there exist constants C−(s, z) and C+(s, z) for which

an + am + C− ≤ an+m ≤ an + am + C+. (5.3)

holds for all m, n ∈ N, see [5, Lemma 12.10]. A consequence of this fact, together with
a precise control of the arising constants, is stated below.
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Lemma 7 [5, Theorem 12.8]. For any z ∈ C
+, there are cs(z), Cs(z) ∈ (0,∞) such that

for all n ∈ Z

c−1
s (z)eϕ(s,z)|n| ≤ E

(|GAnd(0, n; z)|s) ≤ Cs(z)e
ϕ(s,z)|n|. (5.4)

Moreover, for any compact set K ⊂ R and S ⊂ [−1, 1), we have the local uniform
bound

sup
s∈S

sup
z∈K+i(0,1]

max{cs(z), Cs(z)} < ∞ (5.5)

and the same result holds with z replaced by its boundary value E + i0 for Lebesgue
almost every E.

On the other hand, for fixed z ∈ C
+, ϕ(s, z) is shown to be convex function of s and

non-increasing in [−1,+∞), with its derivative at s = 0 satisfying ∂ϕ(0,z)
∂s = −L(z).

It is a consequence of these facts that for almost every E ∈ R there exists a value
s = s(E) ∈ (0, 1) such that

ϕ(s, E) ≤ − s

2
L(E). (5.6)

The above is the content of [5, Equation (12.86)]. Dynamical localization is shown to
hold locally as a consequence of the inequality (5.3) along with Lemma 7, the inequality
(5.6) and Kotani theory, which establishes thatL(E) is positive for almost every E ∈ R.

5.2. Modifications. In this section we will outline the proof of Theorem 1 with HHub
again replaced by the operator H on �2

(
Z

d
)
defined in (4.1). For simplicity we set

λ = 1 since the disorder strength does not play an important role in Theorem 1. Let
H+ = H[0,∞)∩Z be the restriction of H to �2

(
Z
+
)
and denote byG+(m, n; z) theGreen’s

function of H+. Recall the definition of the Lyapunov exponent: initially, for z ∈ C
+,

we let

L(z) = −E
(
ln |G+(0, 0; z)|) . (5.7)

By Herglotz theory (see, for instance, [5, Appendix B] and references therein) it is seen
that, for Lebesgue almost every E ∈ R, L(E) is well defined as limδ→0+ L(E + iδ).
Finally, recall the uniform positivity of the Lyapunov exponent for the Anderson model
on �2 (Z):

ess inf
E∈R LAnd(E) > LAnd (5.8)

for someLAnd > 0. The first step towards Green’s function decay (4.5) will be showing
uniform positivity of L(E), which is accomplished by the following.

Theorem 8. There exists a constant CLyap(s, η, g, ‖F‖∞) > 0 such that

|L(z) − LAnd(z)| ≤ CLyap|g|s (5.9)

for all z ∈ C
+.
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Proof. From the resolvent identity we obtain

|G+(0, 0; z)|
|G+

And(0, 0; z)| ≤ 1 + |g|‖F‖∞
∑

n
|G+(0, n; z)| |G

+
And(n, 0; z)|

|G+
And(0, 0; z)| (5.10)

|G+
And(0, 0; z)|

|G+(0, 0; z)| ≤ 1 + |g|‖F‖∞
∑

n
|G+

And(0, n; z)| |G
+(n, 0; z)|

|G+(0, 0; z)| (5.11)

Using the bound ln(1 + x) ≤ xs

s for 0 < s < 1 and x > 0 we reach, for 0 < s < 1/2,

ln

(
|G+(0, 0; z)|

|G+
And(0, 0; z)|

)

≤ |g|s
s

‖F‖s∞
∑

n
|G+(0, n; z)|s |G+

And(n, 0; z)|s
|G+

And(0, 0; z)|s . (5.12)

Taking expectations, using the definition of the Lyapunov exponents and the Cauchy–
Schwarz inequality

LAnd(z) − L(z) ≤ |g|s
s

‖F‖s∞ sup
n

E

(
|G+(0, n; z)|2s

)1/2 ∑

n
E

( |G+
And(n, 0; z)|2s

|G+
And(0, 0; z)|2s

)1/2

:= CLyap(s, η, ν, ‖F‖∞)|g|s . (5.13)

The fact that CLyap is a finite quantity follows from a couple of remarks. Firstly, by
Feenberg’s expansion [5, Theorem 6.2] we have the identity

|G+
And(n, 0; z)| = |G+

And(0, 0; z)||G+
And(1, n; z)| (5.14)

where G+
And(1, n; z) denotes the Green’s function of HAnd restricted to �2 (Z)∩ [1,∞).

From the a-priori fractional moment bound on Lemma 4 combined with the Green’s
function decay for the one dimensional Anderson model

E

(
|G+

And(1, n; z)|2s
)

< C(s)e−μAnd|n| (5.15)

we conclude that that CLyap < ∞. The estimate for L(z) − LAnd(z) is similar.

In principle onemight worry that the pre-factorCLyap on the above boundwill depend
on g. However, it is easy to see from the arguments in the proof of Lemma 4, that CAP
converges to a finite quantity as g → 0, thus we shall disregard its dependence on g.

Corollary 9. Whenever |g| <
(
LAnd
CLyap

)1/s
holds for some s ∈ (0, 1/2), we have

L0 := ess inf
E∈R L(E) > 0. (5.16)

Wecannowproceed to the second step of the proof ofTheorem1,which consists of es-
tablishingGreen’s function decay fromCorollary 9. For that purpose, an important detail
to keep in mind is that, in the correlated context, if we choose an = logE (|G(0, n; z)|s),
the condition (5.3) will not be fulfilled for all pairs (m, n) due to the lack of independence
between the potentials. This means that Fekete’s lemma is not applicable. Moreover, its
well-studied modifications (for instance by Erdös and de Bruijn [15]) do not seem to
suffice either.

To the best of our knowledge the result given below is new. Its formulation takes
into account the strong decorrelation between the potentials in the Hubbard model and
introduces a notion of approximate subbaditivity.
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Lemma 10 (Fekete-type lemma for approximately subbaditive sequences). Let δ > 0
be given and {an}n∈N be a sequence of real numbers such that, for every triplet m, n, r
of natural numbers with r ≥ δmax{logm, log n}, the inequality

an+m+r ≤ an + am + C (5.17)

holds with a constant C independent of m, n and r. Then,

α = lim
n→∞

an

n
(5.18)

exists and equals infn∈N an+C
n . Moreover, α ∈ [−∞, 0].

Note that, as a consequence, we have

an ≥ nα − C (5.19)

for all n ∈ N, where C is the same constant as in (5.17). The following decou-
pling estimate guarantees the applicability of the above lemma with the choice an =
logE

(
|Ĝ(0, n; z)|s

)
, where Ĝ(0, n; z) = 〈0|(H[0,n] − z)−1|n〉 is the Green’s function

of the operator H restricted to �2 ([0, n] ∩ Z)

Lemma 11 (Strong mixing decoupling). There exist positive numbers
CDec(s, ν, η, g, ‖F‖∞), and δ = δ(η, ν, g, ‖F‖∞) such that the inequality

E

(
|Ĝ(0, n + m + r; z)|s

)
≤ Cr+1

DecE

(
|Ĝ(0, n; z)|s

)
E

(
|Ĝ(0, m; z)|s

)
(5.20)

holds whenever r ≥ δ logmax{m, n}.
The above implies that the sequence bn = −n lnCDec + lnE

(
|Ĝ(0, n; z)|s

)
satisfies

bn+m+r ≤ bn + bm + lnCDec. In particular limn→∞ bn
n exist and so does

ϕ(s, z) = lim|n|→∞
lnE

(
|Ĝ(0, n; z)|s

)

|n| . (5.21)

After obtaining an analogue of Lemma 7, the final step will be to relate the moment-
generating function to the Lyapunov exponent through an inequality of the type

ϕ(s, E) ≤ − s

2
L0. (5.22)

In particular, ϕ(s, E) ≤ 0. In reference [5], the bound (5.22) is stated with L0 replaced
byL(E) and with s depending on E . However, it is easy to see from the arguments given
there that s can be chosen locally uniformly in E , in which case Corollary 9 allows us
to conclude (5.22). For further details, see [5, Equations (12.79) and (12.80)].
The mere existence of the limit in (5.21), along with the fact that ϕ < 0, implies that for
|n| sufficiently large we have

E

(
|Ĝ(0, n; z)|s

)
≤ e

ϕ(s,z)
2 |n|. (5.23)
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The above, combined with (5.22), gives, for |n| sufficiently large,

E

(
|Ĝ(0, n; z)|s

)
≤ e

−sL0
4 |n|. (5.24)

Hence, there exists a positive constant C which is locally uniform in z and such that

E

(
|Ĝ(0, n; z)|s

)
≤ Ce

−sL0
4 |n| (5.25)

holds for all n ∈ Z.
Making use of Lemma 4 and translation invariance we reach, up to an adjustment of

the constant C ,

E
(|G(0, n; z)|s) ≤ Ce

−sL0
4 |n|. (5.26)

for all n ∈ Z. This finishes the proof of Theorem 1 assuming Lemmas 10 and 11 , which
we prove later in Sect. 11.

The remainder of the paper is organized as follows. Sections 6, 7 and 8 establish
existence, regularity and decay properties of the effective potential in the model (4.1).
Section 9 contains the proof of Lemma 5. Section 10 explains the required modifications
for the Hubbard model. The proof of Theorem 2 is finished combining Sects. 9 and 10.
Section 11 covers the remaining details of the proof of Theorem 1 and Sect. 12 contains
the proof of Theorem 3.

6. Existence of the Effective Potential

To justify the definition of the effective potential in (4.1), let�(V ) : �∞(Zd) → �∞(Zd)

be given by �(V )(n) := 〈n|F(T + λVω + gV )|n〉. Recall that F is analytic, bounded
on the strip S = {|Imz| < η} and continuous up to the boundary of S. Our goal is to
check that � is a contraction on �∞ (

Z
d
)
, meaning that

‖�(V ) − �(W )‖�∞(Zd ) < c‖V − W‖�∞(Zd ) (6.1)

holds for some c < 1 and all V, W ∈ �∞(Zd). Using the analiticity of F we have the
following representation [3, Equation (D.2)]

F(T + λVω + gV ) = 1

2π i

∫ ∞
−∞

(
1

T + λVω + gV − iη + t
− 1

T + λVω + gV + iη + t

)

f (t) dt (6.2)

for all V ∈ �∞(Zd), where f = F+ + F− + D ∗ F for F±(u) = F(u ± iη) and
D(u) = η

π(η2+u2)
is the Poisson kernel. It follows immediately that ‖ f ‖∞ ≤ 3‖F‖∞.

This is a prelude for the following fixed point argument, where the operator T will be
assumed to satisfy

sup
n

∑

m

|T (m, n)|
(

eν|m−n| − 1
)

<
η

2
. (6.3)
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Proposition 12. (C1) For any self-adjoint operator T on �2
(
Z

d
)

satisfying (6.3) and
bounded potentials V, W , we have, for any ν′ ∈ (0, ν), that

∣
∣
∣〈m|(F(T + V ) − F(T + W ))|n〉

∣
∣
∣ ≤ 72

√
2e−ν′|m−n|

η
(
1 − eν′−ν

)d
‖F‖∞‖V − W‖∞. (6.4)

(C2) For any self-adjoint operator T on �2
(
Z

d
) ⊕ �2

(
Z

d
)

satisfying (6.3) and bounded
potentials V, W on �2

(
Z

d
) ⊕ �2

(
Z

d
)

we have, for any ν′ ∈ (0, ν), that

∣
∣
∣〈m|(F(T + V ) − F(T + W ))|n〉

∣
∣
∣ ≤ 144

√
2e−ν′|m−n|

η
(
1 − eν′−ν

)d
‖F‖∞‖V − W‖∞ (6.5)

(C3) For any m, n, j ∈ Z
d , the matrix elements 〈m|F(T + gV )|n〉 are differentiable with

respect to V ( j) and

∣
∣
∣
∂〈m|F(T + gV )|n〉

∂V ( j)

∣
∣
∣ ≤ |g|72

√
2e−ν(|m− j |+|n− j |)

η
‖F‖∞‖V ‖∞. (6.6)

Proof. The resolvent identity gives

〈m| 1

T + V − t − iη
− 1

T + W − t − iη
|n〉 + 〈m| 1

T + W − t + iη
− 1

T + V − t + iη
|n〉

= 〈m|( 1

T + V − t − iη
− 1

T + V − t + iη
)(W − V )

1

T + W − t − iη
|n〉

− 〈m|
(

1

T + W − t + iη
− 1

T + W − t − iη

)

(W − V )
1

T + V − t + iη
|n〉.

Taking absolute values in the first term on the right-hand side we obtain

∣
∣
∣〈m|

(
1

T + V − t − iη
− 1

T + V − t + iη

)

(W − V )
1

T + W − t − iη
|n〉

∣
∣
∣

≤
∑

l∈Zd

|GV (m, l; t + iη) − GV (m, l; t − iη)||(W − V )(l)|GW (l, n; t + iη)|

≤ 24
∑

l

|(V − W )(l)|e−ν(|l−n|+|l−m|)〈m| 1

(T + V − t)2 + η2/2
|m〉1/2〈l| 1

(T + V − t)2 + η2/2
|l〉1/2.

In the last step we made use of the Combes–Thomas bound |GW (m, n; t + iη)| ≤
2
η

e−ν|m−n| as well as lemma 3 in [3, appendix D] to estimate the difference between the
Green functions as

|GV (m, l; t + iη) − GV (m, l; t − iη)|
≤ 12ηe−ν|m−l|〈m| 1

(T + V − t)2 + η2/2
|m〉1/2〈l| 1

(T + V − t)2 + η2/2
|l〉1/2. (6.7)
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Integrating over t we conclude, using Cauchy–Schwarz and the spectral measure rep-
resentation, that

∫ ∞

−∞

∣
∣
∣
∣〈m|

(
1

T + V − t − iη
− 1

T + V − t + iη

)

(W − V )
1

T + W − t − iη
|n〉

∣
∣
∣
∣ dt

(6.8)

≤ 24
√
2π

η

∑

l

|(V − W )(l)|e−ν(|l−n|+|l−m|).

The above implies that

1

2π

∫ ∞

−∞

∣
∣
∣〈m|

(
1

T + V − t − iη
− 1

T + V − t + iη

)

(W − V )
1

T + W − t − iη
|n〉

∣
∣
∣ dt

≤ 12
√
2

η
‖V − W‖∞e−ν′|m−n| ∑

l∈Zd

e(ν′−ν)|l−n|

= 12
√
2

η
‖V − W‖∞e−ν′|m−n| 1

(
1 − eν′−ν

)d
.

As a similar bound holds for 1
2π

∫ ∞
−∞

∣
∣
∣〈m|

(
1

H0+W−t+iη − 1
H0+W−t−iη

)
(V − W )

1
H0+V −t+iη |n〉

∣
∣
∣ dt , we conclude the proof of the inequality (6.4) by recalling that ‖ f ‖∞ ≤

3‖F‖∞. The inequality (6.5) in the statement of Proposition 12 follows from the same
argument with the only difference that one has to sum two geometric series, hence
the modification on the upper bound. The bound (6.6) is proven similarly: note that

h 12
√
2π

η
e−ν| j−n|e−ν|m− j | is an upper bound for the left-hand side of Eq. (6.8) with V

replaced by gV and W = g(V + h Pj ), where Pj denotes the projection onto Span{δ j }.
We also observe that this time there will be no summation over l, hence the introduction
of ν′ is unnecessary. We then conclude that

∣
∣
∣
〈m|F(T + gV + h Pj )|n〉 − 〈m|F(T + gV )|n〉

h

∣
∣
∣ ≤ 72

√
2π

η
e−ν| j−n|e−ν|m− j |. (6.9)

Letting h → 0 finishes the proof.

Taking m = n, as a consequence of the above Proposition, (6.1) holds whenever

|g| <
η

(
1 − e−ν

)d

72
√
2‖F‖∞

. (6.10)

This observation yields the following.

Proposition 13. Let gd = η(1−e−ν)
d

72
√
2‖F‖∞

. Then, for |g| < gd , there is a unique effective

potential Veff ∈ �∞ (
Z

d
)

satisfying

Veff(n) = 〈n|F(H0 + λω + gVeff |n〉. (6.11)

Moreover, for � ⊂ Z
d , there is a unique V �

eff in �2 (�) satisfying (6.11) with H replaced
by H� = 1� H1�.
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Remark. Replacing H0 by H0 − κ I we can incorporate a chemical potential in our
results. For simplicity, we shall make no further reference to κ during the proofs and
assume it was already incorporated to H0.

7. Regularity of the Effective Potential

Our goal in this section is to conclude that, for a fixed finite subset � ⊂ Z
d with

|�| = n, the effective potential Veff is a smooth function of {ω( j)} j∈�. This will be of
relevance for several resampling arguments later in the note. For that purpose, define a
map ξ : �∞ (

Z
d
) × R

n → �∞ (
Z

d
)
by

ξ(V, ω)( j) = V ( j) − 〈 j |F(H0 + λω + gV )| j〉 (7.1)

Then, Veff is the unique solution of ξ(V, ω) = 0. Thus, its regularity can be inferred via
the implicit function theorem once we check that the derivative Dξ(·, ω) is non-singular.
Note that

∂ξ(V, ω)( j)

∂V (l)
= δ jl − ∂〈 j |F(H0 + λω + gV )| j〉

∂V (l)
. (7.2)

Using Lemma 12, we have that

∣
∣
∣
∂〈 j |F(H0 + λω + gV )| j〉

∂V (l)

∣
∣
∣ ≤ |g|72

√
2e−2ν| j−l|

η
‖F‖∞. (7.3)

In particular, whenever |g| 72
√
2‖F‖∞

η(1−e−2ν )d < 1 we have that the operator Dξ(ω, .) :
�∞ (�) → �∞ (�) is invertible since it has the form I + gM where, by (6.6), gM
has operator norm less than one. Note the smallness condition on g is independent of
� ⊂ Z

d . It is a consequence of the implicit function theorem that V is a smooth function
of (ω(1), . . . , ω(n)).

8. Decay Estimates for the Effective Potential

We start this section with the following lemma, which will be useful to formulate the
decay of correlations between U (n) and U (m) as |m − n| → ∞.

Lemma 14. Whenever 72
√
2|g|‖F‖∞

η(1−e−ν)
d < 1, there exist constants C1(d, λ, g, η, ‖F‖∞, ν)

and C2(d, λ, g, η, ‖F‖∞, ν) such that

max
{ ∑

m

eν|n−m|
∣
∣
∣
∂Veff(n)

∂ω(m)

∣
∣
∣,

∑

n

eν|n−m|
∣
∣
∣
∂Veff(n)

∂ω(m)

∣
∣
∣
}

≤ C1 (8.1)

∑

l,m,n

eν(|l−n|+|n−m|+|l−m|)
∣
∣
∣

∂2Veff(n)

∂ω(m)∂ω(l)

∣
∣
∣ ≤ C2. (8.2)

Moreover C1 and C2 can be bounded from above by a constant of the form λD
1−gθ

with
D and θ independent of g and these constants are explicit in the proof.
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Proof. For convenience we denote Veff = V . As in Sect. 6 we write

F(H) = 1
2π i

∫ ∞
−∞

(
1

H+t−iη − 1
H+t+iη

)
f (t) dt where f is bounded by 3‖F‖∞. Thus

V (n, ω) = 1

2π i

∫ ∞

−∞
K (n, t, ω) f (t) dt (8.3)

where K (n, t, ω) = G(n, n; t − iη) − G(n, n; t + iη). Denote by Pm the projection
mapping �2

(
Z

d
)
onto �2 (Span{δm}). Using difference quotients, it is easy to check

∂

∂ω(m)

1

H − z
+ g

1

H − z

∂V

∂ω(m)

1

H − z
= −λ

1

H − z
Pm

1

H − z
. (8.4)

Taking matrix elements we obtain

∂K (n, t, ω)

∂ω(m)
= −g

∑

l

G̃(l, n)
∂V (l)

∂ω(m)
+ λr(m, n).

G̃(l, n) := G(l, n; t + iη)G(n, l; t + iη) − G(l, n; t − iη)G(n, l; t − iη).

r(m, n) := G(n, m; t + iη)G(m, n; t + iη) − G(n, m; t − iη)G(m, n; t − iη).

Note that

G̃(l, n) = (G(l, n; t + iη) − G(l, n; t − iη)) G(n, l; t + iη)

+ (G(n, l; t + iη) − G(n, l; t − iη)) G(l, n; t − iη). (8.5)

We now make use of [3, Lemma 3]:

|G(l, n; t + iη) − G(l, n; t − iη)|
≤ 12ηe−ν|l−n|〈n| 1

(H − t)2 + η2/2
|n〉1/2〈l| 1

(H − t)2 + η2/2
|l〉1/2. (8.6)

This, together with the Combes-Thomas bound |G(l, n, t ± iη)| ≤ 2
η

e−ν|l−n| and (8.5)
implies

|G̃(l, n)| ≤ 48e−2ν|l−n|〈n| 1

(H − t)2 + η2/2
|n〉1/2〈l| 1

(H − t)2 + η2/2
|l〉1/2.

|r(m, n)| ≤ 48e−2ν|m−n|〈m| 1

(H − t)2 + η2/2
|m〉1/2〈n| 1

(H − t)2 + η2/2
|n〉1/2.

Thus

K̃ (l, n) :=
∫ ∞

−∞
|G̃(l, n)| dt ≤ 48

√
2π

η
e−2ν|l−n|

r̃(m, n) :=
∫ ∞

−∞
|r(m, n)| dt ≤ 48

√
2π

η
e−2ν|m−n|.

To summarize, we have shown the following inequality

∣
∣
∣
∂V (n)

∂ω(m)

∣
∣
∣ ≤ 3‖F‖∞

2π

(

|g|
∑

l

K̃ (l, n)

∣
∣
∣
∂V (l)

∂ω(m)

∣
∣
∣ + λr̃(m, n)

)

.
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Whenever 72
√
2|g|

η(1−e−2ν)
d < 1 we have that

|g|‖K̃‖∞,∞ < 1 (8.7)

where

‖K̃‖∞,∞ = sup
l

∑

m

K̃ (l, m). (8.8)

Considering the weight W (n) := eν|m−n| we let

θ := 3‖F‖∞
2π

sup
n

∑

l

W (n)

W (l)
K̃ (n, l). (8.9)

By the triangle inequality,

θ ≤ 3‖F‖∞
2π

sup
n

∑

l

eν|n−l| K̃ (n, l)

≤ 72
√
2‖F‖∞

η
(
1 − e−ν

)d
.

hence, whenever 72
√
2|g|

η(1−e−ν)
d < 1, we have that

|g|θ < 1. (8.10)

Moreover, with the choice

D1 :=
∑

n

W (n)r̃(m, n) (8.11)

we have

D1 ≤ 72
√
2‖F‖∞

η
(
1 − e−ν

)d
. (8.12)

After conditions (8.7), (8.10) and (8.12) have been verified, the general result [5,
Theorem 9.2] applies, yielding

∑

m

eν|n−m|
∣
∣
∣
∂V (n)

∂ω(m)

∣
∣
∣ <

λD1

1 − gθ
:= C1(d, ‖F‖∞, λ, g, η, ν). (8.13)

Differentiating (8.4) with respect to ω(l),

∂2

∂ω(m)∂ω(l)

1

H − z
+ g

(
∂

∂ω(l)

1

H − z

)
∂V

∂ω(m)

1

H − z

+ g
1

H − z

∂V

∂ω(m)

(
∂

∂ω(l)

1

H − z

)

+ g
1

H − z

∂2V

∂ω(m)∂ω(l)

1

H − z

= −λ

(
∂

∂ω(l)

1

H − z

)

Pm
1

H − z
− λ

1

H − z
Pm

(
∂

∂ω(l)

1

H − z

)

Repeating the previous argument and using the established decay of ∂V (n)
∂ω(m)

we reach
(8.2), finishing the proof.
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Remark. Using the chain rule it is straightforward to check that

∂Veff(n)

∂U (m)
= ∂Veff(n)

∂ω(m)
− g

λ

∑

l∈Zd

∂Veff(n)

∂ω(l)

∂Veff(l)

∂U (m)
.

Thus, it follows from the above techniques that ∂Veff (n)
∂U (m)

and ∂Veff (n)
∂ω(m)

have the same rate
of decay.

Given a finite set � ⊂ Z
d and an arbitrary specification of the random variables ω,

let us define T : R|�| → R
|�| by

(Tω) (n) = ω(n) +
g

λ
Veff(n). (8.14)

Let U (n) := (Tω) (n) be the new coordinates in the probability space. The bound
(8.1) implies that if {ω(nk)}|�|

k=1 and {ω̃(nk)}|�|
k=1 are two configurations of the random

variables in � we have that, for any j ∈ �,
∣
∣Veff( j)

(
ω(n1), . . . , ω(n|�|)

) − Veff( j)
(
ω̃(n1), . . . , ω̃(n|�|)

) ∣
∣

≤
|�|∑

k=1

∣
∣∂Veff( j)

∂ω(nk)

∣
∣|ω(nk) − ω̃(nk)|

≤ C1

|�|∑

k=1

e−ν| j−nk ||ω(nk) − ω̃(nk)|.

Where both effective potentials are calculated with the same specification of the random
variables {ω(l)}{l∈�c} outside�. Summing over j , we may conclude that the map below
is Lipschitz with a Lipschitz constant independent of |�|:

(
ω(n1), . . . , ω(n|�|)

) �→ (
Veff(n1)

(
ω(n1), . . . , ω(n|�|)

)
, . . . ,

Veff(n|�|)
(
ω(n1), . . . , ω(n|�|)

))
. (8.15)

In particular, for |g|
λ
sufficiently small, T is a perturbation of the identity by a map with

Lipschitz constant less than one. It follows from the contraction mapping theorem that
T is a bijection, thus T−1 : R|�| → R

|�| is well defined.
Fix n0 ∈ � and denote by Uα = U + (α − U (n0)) δn0 the new potential obtained

from U by setting its value at n0 equal to α. Let ωα(n) = (
T−1Uα

)
(n). The variables

ωα(n) correspond to the change in ω(n) when a resampling argument is applied to the
new probability space at the point n0. Intuitively, the exponential decay guarantees that
this change is not too large if n and n0 are far away. This is the content of the lemma
below.

Lemma 15. For all α ∈ R and |g| < λC−1
1 , we have

∑

nn∈�\{n0}
eν|n−n0|∣∣ωα(n) − ω(n)

∣
∣ ≤ C1|g|

λ

(
|α − U (n0)| + 2 |g|‖F‖∞

λ

)

(
1 − |g|

λ
C1

) .

where C1 is the upper bound in Eq. (8.1).
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Proof. Using the given definitions we obtain, for all n in �, that

|ω(n) − ωα(n)| ≤ |α − U (n0)|δn0(n) +
|g|
λ

|Veff(n, ω) − Veff(n, ωα)|. (8.16)

In particular, since we are only interested in the values n �= n0, the above simplifies to

|ω(n) − ωα(n)| ≤ |g|
λ

|Veff(n, ω) − Veff(n, ωα)|

≤ |g|
λ

∑

l∈Zd

∣
∣
∣
∂Veff(n, ω̂α)

∂ω(l)

∣
∣
∣
∣
∣
∣ωα(l) − ω(l)

∣
∣
∣

≤ |g|
λ

∣
∣
∣
∂Veff(n, ω̂α)

∂ω(n0)

∣
∣
∣

(

|α − U (n0)| + 2
|g|‖F‖∞

λ

)

+
|g|
λ

∑

l �=n0

∣
∣
∣
∂Veff(n, ω̂α)

∂ω(l)

∣
∣
∣
∣
∣
∣ωα(l) − ω(l)

∣
∣
∣,

where we have used the mean value inequality and ω̂α denotes some configuration with
ω̂α(l) in the interval connecting ω(l) to ωα(l). Let W (n) = eν|n−n0|. According to (8.1),

sup
n

∑

l

W (n)

W (l)

∣
∣
∣
∂Veff(n, ω̂α)

∂ω(l)

∣
∣
∣ ≤ sup

n

∑

l

eν|n−l|
∣
∣
∣
∂Veff(n, ω̂α)

∂ω(l)

∣
∣
∣

≤ C1.

Once again, the conditions of [5, Theorem 9.2] are satisfied for |g| < λC−1
1 , therefore

∑

n �=n0

eν|n−n0|∣∣ωα(n) − ω(n)
∣
∣ ≤ C1|g|

λ

(
|α − U (n0)| + 2 |g|‖F‖∞

λ

)

(
1 − |g|

λ
C1

) .

Since another application of the mean value inequality gives, after a possible correc-
tion to ω̂α , that

∣
∣
∣
∂Veff(n, ω)

∂ω(m)
− ∂Veff(n, ωα)

∂ω(m)

∣
∣
∣ ≤

∑

l∈Zd

∣
∣
∣
∂2Veff(n, ω̂α)

∂ω(l)∂ω(m)

∣
∣
∣
∣
∣
∣ω(l) − ωα(l)

∣
∣
∣,

we obtain, for any ν′ ∈ (0, ν),

∣
∣
∣
∂Veff(n, ω)

∂ω(m)
− ∂Veff(n, ωα)

∂ω(m)

∣
∣
∣

≤ C2|g|
λ

⎛

⎝C1

(
|α − U (n0)| + 2 |g|‖F‖∞

λ

)

(
1 − |g|

λ
C1

)
(1 − eν′−ν)d

+ 2‖F‖∞

⎞

⎠ e−ν′(|m−n|+|n−n0|+|m−n0|),

where C2 is the constant in (8.2).
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In particular, letting ν′ = ν/2, if A = g
λ

(
∂Veff (ni ,ωα)

∂ω(n j )
)

|�|×|�| and

B = g
λ

(
∂Veff (ni ,ω)

∂ω(n j )

)

|�|×|�| we have

∑

(m,n)∈�×�

|(A − B)m,n| ≤ C2|g|2
λ2

⎛

⎝C1

(
|α − U (n0)| + 2 |g|‖F‖∞

λ

)

(
1 − |g|

λ
C1

)
(1 − e−ν/2)3d

+
2‖F‖∞

(1 − e−ν/2)2d

⎞

⎠ .

(8.17)

We summarize the above observation as a lemma.

Lemma 16. Let A = g
λ

(
∂Veff (ni ,ωα)

∂ω(n j )

)

|�|×|�| and B = g
λ

(
∂Veff (ni ,ω)

∂ω(n j )

)

|�|×|�|. Whenever

|g|
λ

C1 < 1 we have

∑

(m,n)∈�×�

|(A − B)m,n| ≤ |g|2 (C3|α − U (n0)| + C4) . (8.18)

Moreover, the constant C3 can be chosen independent of λ and C4 is proportional to 1
λ

.

Finally, we analyze how the effective potential varies with respect to disorder and
interaction. This will be relevant to the Integrated Density of States regularity. More
precisely

Lemma 17. For a fixed ω ∈ �

|Vλ,g(n) − Vλ′,g′(n)|
≤ C5(d, ‖F‖∞, g, η, ν, ω)

1 − gC6(d, ‖F‖∞, g, η, ν)
|λ − λ′| + C7(d, ‖F‖∞, g, η, ν)|g − g′|. (8.19)

Note when λ �= λ′ the bound depends on ω through the constant C5.

Proof. Let Rλ,g(z) = 1
H0+λω+gVλ,g−z and Rλ′,g′(z) = 1

H0+λ′ω+g′Vλ′,g′−z for z = t + iη.

Similarly as in the above proofs, it is immediate to check that

Rλ,g(z) − Rλ′,g′(z) = (λ − λ′)Rλ,g(z)Vω Rλ′,g′(z) + (g − g′)Rλ,g(z)Vλ′,g′ Rλ′,g′(z)

−gRλ,g(z)
(
Vλ,g − Vλ′,g′

)
Rλ′,g′(z). (8.20)

Replacing z by z̄ and subtracting the resulting equations:
(
Rλ,g(z) − Rλ,g(z̄)

) − (
Rλ′,g′(z) − Rλ′,g′(z̄)

)

= (
Rλ,g(z) − Rλ,g(z̄)

) (
(λ − λ′)Vω + (g − g′)Vλ′,g′

)
Rλ′,g′(z)

+ Rλ,g(z)
(
(λ − λ′)Vω + (g − g′)Vλ′,g′

) (
Rλ′,g′(z) − Rλ′,g′(z̄)

)

− gRλ,g(z)
(
Vλ,g − Vλ′,g′

) (
Rλ′,g′(z) − Rλ′,g′(z̄)

)
.

Taking matrix elements, multiplying by f (t), integrating with respect to t and taking
absolute values we can read from the representation (8.3) that, denoting

Kλ,g(n, l) = |Gλ,g(n, l; z) − Gλ,g(n, l; z̄)|,
|Vλ,g(n) − Vλ′,g′(n)|
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≤ 3‖F‖∞
2π

|λ − λ′|
∑

l∈Zd

|ω(l)|
∫ ∞

−∞
(
Kλ,g(n, l)Kλ′,g′(l, n)

+|Gλ,g(n, l)|K̃λ′,g′(l, n)
)

dt

+
3‖F‖2∞
2π

|g − g′|
∑

l∈Zd

∫ ∞

−∞
(|Gλ,g(n, l)|Kλ′,g′(l, n) + Gλ′,g′(n, l)|Kλ,g(l, n)

)
dt.

+g
∑

l∈Zd

∫ ∞

−∞
|Gλ,g(n, l)||Vλ,g(l) − Vλ′,g′(l)|Kλ′,g′(l, n) dt. (8.21)

Using Eq. 8.6 together with [5, Theorem 9.2] we conclude the proof.

8.1. Improvements. We will now improve upon the previous bounds. Specifically, we
need robust bounds which also reflect the decay of the derivatives of Veff(n) when the
local potential ω(n) is large. The improvements on this section will be important for a
general fluctuation analysis in Sect. 9 and for localization in the one dimensional setting.
Before stating the main result of the section we start with the following deterministic
estimate, which incorporates ideas from [3, Lemma 3].

Lemma 18.

|G(m, l; t + iη)| ≤ √
2〈l| 1

(H − t)2 + η2/2
|l〉1/2e−ν|m−l| (8.22)

Proof. To keep the notation simple, we set t = 0 without loss of generality. Let H f =
e f He− f where f (n) = ν min{|n − l|, R} for a fixed l ∈ Z

d and R > 0. By choosing
R sufficiently large, we may assume that |m − l| < R. We then have

eν|m−l|G(m, l; iη) = 〈m|(H f − iη)−1|l〉.
We claim that

||(H f − iη)−1(H2 + η2/2)1/2|| ≤ √
2. (8.23)

Indeed,

||(H f − iη)−1(H2 +
η2

2
)1/2||2 = ||(H2 +

η2

2
)1/2(H∗

f + iη)−1(H f − iη)−1(H2 +
η2

2
)1/2||

= ||(H2 +
η2

2
)1/2

1

(H f − iη)(H∗
f + iη)

(H2 +
η2

2
)1/2||

where by [3, Eq D.9] (with f replaced by − f ) we have

(H f − iη)(H∗
f + iη) ≥ 1

2

(

H2 +
η2

2

)

showing the claim in (8.23). Lemma 18 will now follow from

|〈m|(H f − iη)−1|l〉| ≤ ‖(H f − iη)−1(H2 +
η2

2
)1/2‖ |(H2 +

η2

2
)−1/2δl |

≤ √
2〈l|(H2 +

η2

2
)−1|l〉1/2.
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Lemma 19. There exists C7(λ, η, d, g, ‖F‖∞, ν) > 0 such that, for m �= n,

max{ |ω(n)|, |ω(m)| }
∣
∣
∣
∂V (n)

∂ω(m)

∣
∣
∣ ≤ C7e−2ν|m−n| (8.24)

and, for n �= n0,
∣
∣ω(n)(ωα(n) − ω(n))

∣
∣

≤ C7|g|
λ − |g|C1

(

|α − U (n0)| + 2
|g|‖F‖∞

λ
+

1
(
1 − e−ν

)d

)

e−ν|n−n0|. (8.25)

Moreover, whenever |g|
λ

C1 < 1, C7 can be chosen to be uniformly bounded as a function
of the parameters λ and g.

Proof. Recall that U (n) = ω(n) + g
λ

Veff(n) denotes the “full" potential at site n. We
split the proof in two cases.

(i) Case one: U (n) ≥ 0.
Let us start by noting that Lemma 18 implies that for n, l ∈ Z

d

∫ ∞

−∞
|G(n, l; t + iη)G(l, n; t + iη)| dt ≤ 2

√
2π

η
e−2ν|n−l|. (8.26)

From the previous section we already know that

∂V (n)

∂ω(m)
=

∫ ∞

−∞

(

−g
∑

l

r(n, l)
∂V (l)

∂ω(m)
+ λr(m, n)

)

f (t) dt (8.27)

where f (t) = F+(t + iη) + F−(t − iη) − D ∗ F(t) and

r(m, n) = G(n, m; t + iη)G(m, n; t + iη) − G(n, m; t − iη)G(m, n; t − iη).

Observe that, for z = t + iη and n �= m,

λ|U (n)G(n, m; t + iη)G(m, n; t + iη)|
= λ|U (n)|

|λU (n) − z|
∑

l

|H0(n, l)G(l, m; t + iη)G(m, n, t + iη)|

≤
(

1 +
|z|

|λU (n) − z|
)∑

l

|H0(n, l)G(l, m; t + iη)G(m, n, t + iη)|

where we made use of the identity

(λU (m) − z)G(n, m; z) = δmn −
∑

l

H0(n, l)G(l, m; z). (8.28)

Note that if U (n) ≥ 0 and t = Rez < 0, then

|z|
|λU (n) − z| ≤ 1. (8.29)
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Using the fact that t f (t) goes to zero as t → ∞ we conclude that
∫ ∞

−∞
|U (n)G(n, m; t + iη)G(m, n; t + iη)|| f (t)| dt ≤ C(ν, η, ‖F‖∞)

λ
e−2ν|m−n|.

(8.30)

Since a similar equation holds with m replaced by l, we can proceed as in the previous
section and, using the exponential decay of ∂V (n)

∂ω(m)
, conclude the proof.

(ii) Case two: U (n) < 0.
In this case, the argument given above must be modified to take into account that the
inequality

|z|
|λU (n) − z| ≤ 1. (8.31)

is satisfied when t = Re > 0. In this case, the use of (8.27) would result in a problem as
t f (t) is unbounded as t → −∞. This can be addressed by observing that the Fermi-Dirac
function F(z) has the following symmetry

1

1 + eβ(z−μ)
= 1 − 1

1 + eβ(−z+μ)
. (8.32)

Hence we can make use of the representation (8.27) corresponding to

− 1

1 + eβ(−z+μ)
:= F∗

μ(z) (8.33)

since, for m �= n, the constant term does not affect the calculation of ∂V (n)
∂ω(m)

. Denoting
by

f ∗(t) = F∗
+ (t + iη) + F∗−(t − iη) − D ∗ F∗(t) (8.34)

we reach

∂V (n)

∂ω(m)
=

∫ ∞

−∞

(

−g
∑

l

r(n, l)
∂V (l)

∂ω(m)
+ r(m, n)

)

f ∗(t) dt (8.35)

where now t f ∗(t) → 0 as t → −∞. Proceeding as in the first case the proof is finished,
showing (8.24). Following the proof of Lemma 15 and using (8.24) we conclude (8.25)

Our next result will be applied to the one dimensional context. Let I = [0, l]∩Z and
J = [−r, l +r ]∩Z. Let {ω(k)}k∈J c be an arbitrary specification of the random variables
outside J . Given a finite, arbitrary, list of real numbers {U ( j)} j∈J , there exists a listωJ =
{ω( j)} j∈J such that the effective potentialVeff (ω) = Veff(ωJ , ωJ c ), as defined in Sect. 6,
satisfies U ( j) = ω( j)+ gVeff(ωJ , ωJ c )( j) for j ∈ J . Recall that in Sect. 8, specifically
in (8.14), we have denotedT (ωJ ) = UJ and showed thatT : R|J | → R

|J | is a bijection,
so that the above reasoning is justified and Veff(ωJ , ωJ c ) = Veff(T−1UJ , ωJ c ).

Similarly, let K = ([−r − a,−r) ∪ (l + r, l + r + b])∩Z be a finite set with a, b > 0
and d(K , I ) = r+1.Given two arbitrary lists of real numbers {U ( j)} j∈J and {Ũ (k)}k∈K ,

let Veff(T−1
(

UJ , ŨK

)
, ωK c ) be the effective potential defined at specified values of
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{ω(l)}l∈K c with U ( j) = ω( j)+ g
λ

Veff(T−1
(

UJ , ŨK

)
, ωK c )( j) for j ∈ J and Ũ (k) =

ω(k) + g
λ

Veff(T−1
(

UJ , ŨK

)
, ωK c )(k) for k ∈ K . In what follows, it will be useful to

think of Veff(T−1UJ , ωJ c ) as a function of UJ and ωJ c instead of ωJ and ωJ c . For that
reason and for simplicity, we abuse notation writing

Veff(UJ , ωJ c ) = Veff(T−1UJ , ωJ c ) (8.36)

and

Veff(UJ , ŨK , ωK c ) = Veff(T−1
(

UJ , ŨK

)
, ωK c ). (8.37)

The result below is a deterministic lemma which, intuitively speaking, states that, if
|m − n| is large, Veff(UJ , ωJ c )(n) changes very little when the random variables U (m)

or ω(m) are replaced by different realizations Ũ (m) or ω̃(m).

Lemma 20 (Locality of the effective potential). There exists C = C(η, g, λ, ν) finite
and ν > 0 such that:

(a) Let {ω(k)}k∈J c and {ω̃(k)}k∈J c be two arbitrary realizations of the random variables
outside J and Veff(UJ , ωJ c ), Veff(UJ , ω̃J c ) be the effective potentials defined as
above. Then, for each n ∈ I

max{1, |U (n)|} |Veff(UJ , ω̃J c )(n) − Veff(UJ , ωJ c )(n)| ≤ Ce−νdist(n,J c) (8.38)

(b) For each n ∈ I , we have

max{1, |U (n)|} |Veff(UJ , UK , ωK c )(n) − Veff(UJ , ŨK , ωK c )(n)| ≤ Ce−νdist(n,K )

(8.39)

where dist(n, X) = min{|n − x | : x ∈ X}.
Proof. The proofs of the above statements are similar. We give the details for (a) only.
Let H be the operator associated to

({U ( j)} j∈J , {ω(k)}k∈J c , Veff(UJ , ωJ c )
)
. More pre-

cisely, H = H0 + ω + Veff(UJ , ωJ c ) with Veff(UJ , ωJ c )(n) = 〈n|F(H)|n〉. Similarly,
let H̃ be the operator associated to

({U ( j)} j∈J , {ω̃(k)}k∈J c , Veff (UJ , ω̃J c )
)
. Denote

by G(m, n; z) and G̃(m, n; z) the respective Green’s functions. Assume, firstly, that
|U (n)| ≤ 1. By the resolvent identity and since H and H̃ have the same potential within
J , we know that

G(n, n; z) − G̃(n, n; z) = −λ
∑

k∈J c

G(n, k; z)

(
(ω(k) − ω̃(k)) +

g

λ
(Veff(UJ , ωJ c )(k) − Veff(UJ , ω̃J c )(k))

)
G̃(k, n; z).

(8.40)

For a given k ∈ J c, it follows from Lemma 18 that, whenever Rez = t and |Imz| = η,

∫ ∞

−∞
|G(n, k; z)G̃(k, n; z)| dt ≤ 2

√
2π

η
e−2ν|n−k|. (8.41)
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Thus, letting f (t) = F+(t + iη) + F−(t − iη) − D ∗ F(t), the quantity
∫ ∞

−∞

∑

k∈J c

|G(n, k; z) (Veff(UJ , ωJ c )(k) − Veff(UJ , ω̃J c )(k)) G̃(k, n; z)|| f (t)| dt

(8.42)

decays as Ce−2νd(n,J c), due to the boundedness of the effective potentials. Along the
lines of the proof of Lemma 19, making use of (8.28) applied to either H or Ĥ , we may
conclude that

∫ ∞

−∞
|ω(k)||G(n, k; z)G̃(k, n; z)|| f (t)| dt

and
∫ ∞

−∞
|ω̃(k)||G(n, k; z)G̃(k, n; z)|| f (t)| dt

both decay as Ce−2ν|n−k| even when ω(k) and ω̃(k) are unbounded. In particular, the
sums

∑

k∈J c

∫ ∞

−∞
|ω(k)||G(n, k; z)G̃(k, n; z)|| f (t)| dt (8.43)

and

∑

k∈J c

∫ ∞

−∞
|ω̃(k)||G(n, k; z)G̃(k, n; z)|| f (t)| dt (8.44)

both decay as Ce−2νd(n,J c). The proof is finished by taking absolute values in (8.40),
integrating against | f (t)| and using the representation (8.3) for both Veff(UJ , ωJ c )(n)

and Veff(UJ , ω̃J c )(n).
When |U (n)| > 1, we need to improve upon the above again with ideas related to

the proof of Lemma 19. Namely, multiplying (8.40) byU (n) and taking absolute values,
we must estimate three terms:

∫ ∞

−∞
|U (n)||ω(k)||G(n, k; z)G̃(k, n; z)|| f (t)| dt,

∫ ∞

−∞
|U (n)||ω̃(k)||G(n, k; z)G̃(k, n; z)|| f (t)| dt

and
∫ ∞

−∞

∑

k∈J c

|U (n)||G(n, k; z) (Veff(UJ , ωJ c )(k) − Veff(UJ , ω̃J c )(k)) G̃(k, n; z)|| f (t)| dt.

(8.45)

The later decays as Ce−2ν|n−k|, again due to the identity (8.28) and Lemma 18. The
first two are more challenging. It suffices to present the decay proof for one of them,
say

∫ ∞
−∞ |U (n)||ω(k)||G(n, k)G̃(k, n; z)|| f (t)| dt . Since ω(k) and U (k) := ω(k) +
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g
λ

Veff(UJ , ωJ c )(k) differ by a bounded factor, we may verify the desired exponential
decay for

∫ ∞

−∞
|U (n)||U (k)||G(n, k)G̃(k, n; z)|| f (t)| dt.

λG(n, k; z)U (k) = G(k, n; z)λU (k)

= zG(k, n; z) +
∑

m∈Z
G(n, m; z)H0(m, k)

= zG(n, k; z) +
∑

m∈Z
G(m, n; z)H0(m, k)

= λG(n, k; z)U (n) −
∑

m′∈Z
G(n, m′; z)H0(m

′, k) +
∑

m∈Z
G(m, n; z)H0(m, k).

(8.46)

Thus, we can essentially replace the terms |G(n, k; z)U (k)G̃(k, n; z)| appearing in
(8.46) by |G(n, k; z)U (n)G̃(k, n; z)|. Indeed, the terms

∑
k′∈Z G(n, k′; z)H0(k′, j) and

∑
k∈Z G(k, n; z)H0(k, j) can be shown to decay asCe−ν|n− j | with the use of Lemma 18

and off-diagonal decay of H0.
Thus, we are left estimating

|U (n)|2|G(n, k; z)G̃(k, n; z)|. (8.47)

Since k �= n, using the identities

G(n, k; z) = 1

(λU (n) − z)

∑

l

G(n, l; z)H0(l, k)

and

G̃(k, n; z) = 1

(λU (n) − z)

∑

l ′
G̃(l ′, n; z)H0(l

′, k)

we reach

|U (n)|2|G(n, k; z)G̃(k, n; z)|
≤ |U (n)|2

|(λU (n) − z)(λU (n) − z)|
∑

l,l ′∈Z
|G(n, l; z)G̃(l ′, n; z)H0(l

′, k)H0(l, k)|.

(8.48)

The proof can be now be concluded with arguments identical to the ones in Lemma 19.
Namely, if U (n) > 0 we choose to represent both Veff(UJ , ωJ c ) and Veff(UJ , ω̃J c )

according to (6.2). Integrating (8.48) against | f (t)|, using Lemma 18 and the fact that
t2 f (t) decays exponentially as t → ∞ we conclude that

∫ ∞

−∞
|U (n)|2|G(n, k; z)G̃(k, n; z)|| f (t)| ≤ Ce−2ν|n−k| (8.49)

when U (n) > 0. In case U (n) < 0 we make use of the symmetry in (8.32) to represent
both Veff(UJ , ωJ c ) and Veff(UJ , ω̃J c ) by integrating against f ∗(t), defined as in (8.34).
Since the constant termcancels, Lemma18 and the fact that t2 f ∗(t) decays exponentially
as t → −∞ imply (8.49) in this case.
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Lemma 21. For any n ∈ I we have:

(a)
∣
∣
∣
∂Veff(UJ , ωJ c )(n)

∂ω(m)
− ∂Veff(UJ , ω̃J c )(n)

∂ω(m)

∣
∣
∣ ≤ Ce−ν(|m−n|+r). (8.50)

(b)

∣
∣
∣
∂Veff(UJ , UK , ωK c )(n)

∂ω(m)
− ∂Veff(UJ , ŨK , ωK c )(n)

∂ω(m)

∣
∣
∣ ≤ Ce−ν(|m−n|+r). (8.51)

Proof. The proof follows the same steps as in the previous results. In contrast to (a)
in Lemma 20, to show the inequality (a) above we reduce the proof to analysing the
difference between the quantities r(m, n) and r̃(m, n) given by

r(m, n) = G(n, m; t + iη)G(m, n; t + iη) − G(n, m; t − iη)G(m, n; t − iη)

and

r̃(m, n) = G̃(n, m; t + iη)G̃(m, n; t + iη) − G̃(n, m; t − iη)G̃(m, n; t − iη).

This is due to (8.4) and (8.5), which imply that ∂Veff (UJ ,ωJc )(n)

∂ω(m)
and ∂Veff (UJ ,ω̃Jc )(n)

∂ω(m)
are

obtained by integrating r(m, n) and r̂(m, n), respectively, against f (t).
We observe that

G(n, m; z)G(m, n; z) − G̃(n, m; z)G̃(m, n; z)

= G(n, m; z)
(

G(m, n; z) − G̃(m, n; z)
)
+

(
G(n, m; z) − G̃(n, m; z)

)
G̃(m, n; z).

Moreover,

G(m, n; z) − G̃(m, n; z) = −λ
∑

k∈J c

G(m, k; z)

(
(ω(k) − ω̃(k)) +

g

λ
(Veff(UJ , ωJ c )(k) − Veff(UJ , ω̃J c )(k))

)
G̃(k, n; z).

(8.52)

The proof is now finished using arguments identical to the proof of Lemma 14 and the
improvement on Lemma 19.

9. Proof of Lemma 5

In this section we show the existence of the effective density ρeff . Fix � ⊂ Z
d finite.

Recall that we defined

U (n, ω) := ω(n) +
g

λ
Veff(n, ω). (9.1)

Until the end of this section we suppress the ω dependence on U (n) and Veff . Note that,
for m, n ∈ �,

∂U (m)

∂ω(n)
= δmn +

g

λ

∂Veff(m)

∂ω(n)
. (9.2)
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We have denoted the above change of variables by T : R|�| → R
|�|, which reads

T (ω(n1), . . . , ω(n|�|)) = (U (n1), . . . , U (n|�|)) (9.3)

We can now compute the joint distribution of the {U (n)}. Using the fact that the
random variables {ω(n)}n∈Zd have a common density ρ we conclude that for all Borel
sets I1, . . . , IN in R:

P
(
U (n1) ∈ I1, . . . , U (n|�|),∈ I|�|

)

=
∫

T−1(I1×···×I|�|)

|�|∏

k=1

ρ(ω(nk)) dω(nk)

=
∫

I1×···×I|�|
| det JT−1 |

|�|∏

k=1

ρ
(
T−1U (nk)

)
dU (n1) . . . dU (n|�|)

=
∫

I1×···×I|�|

∣
∣ det

(
I +

g

λ

∂Veff (ni ,T−1U )

∂U (n j )

)∣
∣

|�|∏

k=1

ρ
(

U (nk) − g

λ
Veff (nk ,T−1U )

)
dU (nk).

Therefore the joint distribution of {U (nk)}|�|
k=1 is given by the measure

∣
∣
∣det

(
I +

g

λ

∂Veff (ni ,T−1U )

∂U (n j )

)∣
∣
∣

|�|∏

k=1

ρ
(

U (nk) − g

λ
Veff (nk ,T−1U )

)
dU (n1) . . . dU (n|�|).

(9.4)

It follows that for each n0 ∈ � the conditional expectation of U (n0) at specified values
of {U (n)}n �=n0 has a density given by

ρ�
n0 =

∣
∣ det

(
I + g

λ
∂Veff (ni ,T−1U )

∂U (n j )

)∣
∣∏|�|

k=1 ρ
(
U (nk) − g

λ
Veff(nk,T−1U )

)

∫ ∞
−∞

∣
∣ det

(
I + g

λ
∂Veff (ni ,T−1Uα)

∂U (n j )

)∣
∣∏|�|

k=1 ρ
(
Uα(nk) − g

λ
Veff(nk,T−1Uα)

)
dα

(9.5)

WhereUα(n) := U (n)+(α − U (n0)) δn=n0 . This strategy naturally leads to the analysis
of ratios of determinants. A sufficient condition for an upper bound to the right-hand
side of (9.5) is to obtain positive constants C = Cfluct(U (n0)) and D = D(α) which are
independent of |�| and such that the following estimates hold true

∣
∣ det

(
I+ g

λ

∂Veff (ni ,T−1Uα)

∂U (n j )

)∣
∣

∣
∣ det

(
I+ g

λ

∂Veff (ni ,T−1U )

∂U (n j )

)∣
∣

≥ D(α). (9.6)

∫ ∞
−∞ D(α)ρ

(
α − g

λ
Veff(n0,T−1Uα)

) ∏
n∈|�|\{n0}

ρ
(
Uα(n)− g

λ
Veff (n,T−1Uα)

)

ρ(U (n)− g
λ

Veff (n,T−1U ))
dα

≥ Cfluct(U (n0)). (9.7)

The bounds (9.7) and (9.6) readily imply that, setting U (n0) = u

ρ�
n0(u) ≤ ρ

(
u − g

λ
Veff(n0,T−1U )

)

Cfluct(u)
. (9.8)
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Lemma 5 will follow from a precise control of the right-hand side of Eq. (9.8).
We now execute the strategy which was outlined above. The ratio of determinants

can be controlled through the following bound, where ‖M‖1 denotes the trace norm of
a matrix M .

Lemma 22. Let A, B be square matrices with I + B invertible. Then,
∣
∣
∣
∣
det (I + A)

det (I + B)

∣
∣
∣
∣ ≤ e‖(A−B)(I+B)−1‖1 . (9.9)

Proof. We make use of the elementary identities

det(I + A)

det(I + B)
= det(I + A)(I + B)−1 (9.10)

and

(I + A)(1 + B)−1 = I + (A − B)(I + B)−1. (9.11)

The proof is now finished making use of the inequality

|det(1 + M)| ≤ e‖M‖1

which holds in the general setting of trace class operators, see [30, Lemma 3.3]

The triangle inequality for the trace norm implies the following.

Corollary 23. Under the above conditions

∣
∣
∣
det(I + B)

det(I + A)

∣
∣
∣ ≥ e−∑

m,n |((A−B)(I+B)−1
)

mn | (9.12)

Letting A = g
λ

(
∂V (ni ,ω)
∂U (n j )

)

|�|×|�| and B = g
λ

(
∂V (ni ,ωα)

∂U (n j )

)

|�|×|�| andusingLemma14

we see that, for |g| < λC−1
1 , (1 + B)−1 has uniformly bounded operator norm. Using

Lemma16andCorollary23weconclude that (9.6) holdswith D(α) = e−|g|2C3(|α−U (n0)|+C4).
We now check that Eq. (9.7) holds when ρ satisfies the fluctuation bound (2.4). We

divide the proof in two cases:

(I) Suppose that c2(ρ) > 0.
Let cρ = max{c1(ρ), c2(ρ)}. The left-hand side of (9.7) is bounded from below by

∫ ∞

−∞
D(α)ρ

(
α − g

λ
Veff(n0,T−1Uα)

) ∏

n∈�\{n0}
e−cρ |ω(n)−ωα(n)|(1+|ω(n)|+|ωα(n)|) dα

(9.13)

which equals
∫ ∞

−∞
D(α)ρ

(
α − g

λ
Veff(n0,T−1Uα)

)
e
∑

n∈�\{n0} −cρ |ω(n)−ωα(n)|(1+|ω(n)|+|ωα(n)| ) dα.

(9.14)
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Due to the triangle inequality and Lemmas 15 and 19, we conclude that there is a positive
constant C = C(d, ‖F‖∞, g, η, ν) with limg→0 C(d, ‖F‖∞, g, η, ν) < ∞ such that
for n �= n0

− cρ |ω(n) − ωα(n)| (1 + |ω(n)| + |ωα(n)|)
≥ −cρ |ω(n) − ωα(n)| (1 + 2|ω(n)| + |ωα(n) − ω(n)|)
≥ −|g|

λ
cρe−ν|n−n0|

(
C2|α − U (n0)|2 + 2C |α − U (n0)|

)
.

Therefore,

− cρ

∑

n∈�\{n0}
|ω(n) − ωα(n)| (1 + |ω(n)| + |ωα(n)|)

≥ −|g|
λ

2cρ
(
1 − e−ν

)d

(
C2|α − U (n0)|2 + 2C |α − U (n0)|

)
).

Thus, by choosing |g|
λ

sufficiently small so that |g|
λ

4cρ

(1−e−ν)
d C2 < cρ and using the

assumption (A4) we obtain

0 <

∫ ∞

−∞
D(α)

ρ
(
α − g

λ
Veff(n0,T−1Uα)

)

ρ
(
U (n0) − g

λ
Veff(n0,T−1U )

) (9.15)

×
∏

n∈�\{n0}
e−cρ |ω(n)−ωα(n)|(1+|ω(n)|+|ωα(n)|) dα < ∞. (9.16)

this, together with (9.8), verifies Lemma 5 when c2(ρ) > 0. If ρ satisfies the assumption
(A5) the above argument yields ρ�

n0(u) ∈ L1 (R, |x |εdx).
(II) Assume that c2(ρ) = 0:

Similarly to the above argument, the left-hand side of (9.7) is bounded from below by

∫ ∞

−∞
D(α)

ρ
(
α − g

λ
Veff(n0,T−1Uα)

)

ρ
(
U (n0) − g

λ
Veff(n0,T−1U )

)e
− |g|

λ

c1(ρ)

(1−e−ν)
d C|α−U (n0)|

. (9.17)

Where, from (2.4)

ρ
(
α − g

λ
Veff(n0,T−1Uα)

)

ρ
(
U (n0) − g

λ
Veff(n0,T−1U )

) ≥ e
−c1(ρ)

(
|α−U (n0)|+2 |g|

λ

)

. (9.18)

Again, choosing |g| sufficiently small we conclude that

0 <

∫ ∞

−∞
D(α)

ρ
(
α − g

λ
Veff(n0,T−1Uα)

)

ρ
(
U (n0) − g

λ
Veff(n0,T−1U )

)
∏

n∈�\{n0}
e−c1(ρ)|ω(n)−ωα(n)| dα < ∞.

(9.19)

finishing the proof.
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10. The Hartree Approximation for the Hubbard Model

Let us now adapt the techniques from the previous sections to the Hubbardmodel. Recall
that HHub is defined as

(
H↑(ω) 0
0 H↓(ω)

)

:=
(

H0 + λVω + gV↑(ω) 0
0 H0 + λVω + gV↓(ω)

)

acting on �2
(
Z

d
)⊕�2

(
Z

d
)
. The operators H0 and Vω are defined as before, i.e; H0+λVω

is the standard Anderson model acting on �2
(
Z

d
)
. The effective potentials are defined

as
(

V↑(ω)(n)

V↓(ω)(n)

)

=
( 〈n|F(H↓)|n〉

〈n|F(H↑)|n〉
)

. (10.1)

Mathematically, the treatment of the above model is very similar to the proof of
Theorem 2 above, therefore some details are skipped and we just indicate the required
modifications.

10.1. Existence of the effective potential. Let �(X, Y ) : �∞ (
Z

d
) ⊕ �∞ (

Z
d
) → �∞

(
Z

d
) ⊕ �∞ (

Z
d
)
be given by

�(X, Y )(m, n) := (〈n|F(H0 + Vω + gY )|n〉, 〈m|F(H0 + Vω + gX)|m〉) .

using Proposition 12, we immediately reach

‖�(X1, Y1) − �(X2, Y2)‖�∞(Zd)⊕�∞(Zd)

≤ |g| 72
√
2

η
(
1 − eν′−ν

)d
‖F‖∞

(
‖X1 − X2‖�∞(Zd) + ‖Y1 − Y2‖�∞(Zd)

)
. (10.2)

Therefore, if |g| 72
√
2

η
(
1−eν′−ν

)d ‖F‖∞ < 1 we conclude � has a unique fixed point Veff =
(
V↑, V↓

)
belonging to �∞ (

Z
d
) ⊕ �∞ (

Z
d
)
.

10.2. Regularity of the effective potential. Fix � ⊂ Z
d finite and define functions

ξ : (�∞ (�) ⊕ �∞ (�)) × R
n → �∞ (�) ⊕ �∞ (�) through

ξ↑(V, ω)( j) = V↑( j) − 〈 j |F(H0 + λω + gV↓)| j〉. (10.3)

ξ↓(V, ω)( j) = V↓( j) − 〈 j |F(H0 + λω + gV↑)| j〉. (10.4)

Our goal is to conclude V ↑,V ↓ are smooth functions of an arbitrary, but finite, list
(ω(1), . . . , ω(n)). Again, this can be done via implicit function theorem once we check
that the derivative

∂ξ(ω, V )( j)

∂V (l)
= δ jl − ∂〈 j |F(H0 + λω + gV )| j〉

∂V (l)
. (10.5)



Localization and IDS Regularity in the Disordered Hubbard Model within Hartree–Fock Theory

is non-singular. Using Lemma 12, we have that for � ∈ {↑,↓}
∣
∣
∣
∂〈 j |F(H0 + λω + gV�)| j〉

∂V (l)

∣
∣
∣ ≤ |g|72

√
2e−2ν| j−l|

η
‖F‖∞. (10.6)

In particular, whenever |g| 144
√
2‖F‖∞

η(1−e−2ν )d < 1 we have that the operator Dξ(ω, .) :
�∞ (�) ⊕ �∞ (�) → �∞ (�) ⊕ �∞ (�) has an inverse. From the implicit function
theorem it follows that V is a smooth function of (ω(1), . . . , ω(n)) for n = |�|.

10.3. Decay estimates. The decay rate in the case of the Hubbard model is dictated by

∣
∣
∣
∂V↑(n)

∂ω(m)

∣
∣
∣ ≤ 3|g|‖F‖∞

∑

l

K̃↓(l, m)

∣
∣
∣
∂V↓(l)

∂ω(m)

∣
∣
∣ + r̃↓(n). (10.7)

∣
∣
∣
∂V↓(n)

∂ω(m)

∣
∣
∣ ≤ 3|g|‖F‖∞

∑

l

K̃↑(l, m)

∣
∣
∣
∂V↑(l)

∂ω(m)

∣
∣
∣ + r̃↑(n). (10.8)

where, for � ∈ {↑,↓}

G̃�(l, m) := G�(l, n; t + iη)G�(n, l; t + iη) − G�(l, n; t − iη)G�(n, l; t − iη).

r�(m, n) := G�(n, m; t + iη)G�(m, n; t + iη) − G�(n, m; t − iη)G�(m, n; t − iη).

K̃�(l, m) :=
∫ ∞

−∞
|G̃�(l, m)| dt.

r̃�(n) :=
∫ ∞

−∞
|r�(n)| dt.

In particular,

∣
∣
∣
∂V↑(n)

∂ω(m)

∣
∣
∣ +

∣
∣
∣
∂V↓(n)

∂ω(m)

∣
∣
∣ ≤ 3|g|‖F‖∞

∑

l

(
K̃↑(l, m) + K̃↓(l, m)

)

×
(∣

∣
∣
∂V↑(l)

∂ω(m)

∣
∣
∣ +

∣
∣
∣
∂V↓(l)

∂ω(m)

∣
∣
∣

)

+
(
r̃↑(n, m) + r̃↓(n, m)

)
. (10.9)

The analysis from the previous sections applies and we obtain Lemmas 14, 15, 16,
19, and 20 and 21 with |.| being replaced by the matrix norm |M | = |M11| + |M21| for
M =

(
M11
M21

)

. The effective potential and its derivatives are to be interpreted as follows:

Veff(n) =
(

V ↑
eff(n)

V ↓
eff(n)

)

,
∂Veff(n)

∂ω(m)
=

⎛

⎝
∂V ↑

eff (n)

∂ω(m)

∂V ↓
eff (n)

∂ω(m)

⎞

⎠ and
∂2Veff(n)

∂ω(m)∂ω(l)
=

⎛

⎝
∂2V ↑

eff (n)

∂ω(m)ω(l)
∂2V ↓

eff (n)

∂ω(m)ω(l)

⎞

⎠ .
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11. One Dimensional Aspects: Proof of Theorem 1

In this section we will prove Theorem 1. We let H+ = H[0,∞)∩Z and denote by
G+(m, n; z) theGreen’s function of H+. Recall the definition of the Lyapunov exponent:

L(z) = −E
(
ln |G+(0, 0; z)|) (11.1)

LAnd(z) = −E
(
ln |G+

And(0, 0; z)|) . (11.2)

Recall in this case H0 = −� hence, we define HHub acting on
(
�2 (Z) ⊕ �2 (Z)

)
by

HHub =
(

H↑(ω) 0
0 H↓(ω)

)

(11.3)

where, denoting by HAnd the standard Anderson model −� + Vω on �2 (Z),
(

H↑(ω) 0
0 H↓(ω)

)

:=
(

HAnd + gV↑(ω) 0
0 HAnd + gV↓(ω)

)

. (11.4)

The effective potentials are defined as (2.8). In the theorem below, we will use an
abbreviation and L(z) will refer to the Lyapunov exponent of either H↑ or H↓ whereas
LAnd(z) will denote the Lyapunov exponent of the Anderson model on �2 (Z).

11.1. Proof of Lemma 10. Since an+m+r ≤ an+am+C , the related sequence bn := an+C
satisfies bn+m+r ≤ bn + bm and an

n converges to infn
an+C

n if and only if bn
n converges to

infn
bn
n . Thus, without loss of generality, we may set C = 0 for simplicity.

Given integers L and � with L >> �, our goal is to bound aL
L from above in terms

of a�

�
. As a initial step, observe that by (5.17) we have

aL ≤ aL−�δ log L�−� + a�.

Iterating the above procedure k + 1 times for

k = k�,L := � L − 2� − δ log L

δ log L + �
� (11.5)

we obtain

aL ≤ (k + 2) a�

In the above iteration we have made use of the fact that in the Assumption (5.17) the
remainder r can be adjusted as long as it satisfies the inequality given there. Thus,

aL

L
≤ �(k + 2)

L

a�

�
(11.6)

Before proceeding with the proof, a few remarks are in order. Firstly, nothing is achieved
by holding � fixed and letting L → ∞ directly on Eq. (11.6) since this only yields the
upper bound of zero. A second attempt would be showing that letting � → ∞ (hence,
L → ∞ as well) implies that the ratio k�

L converges to one. However, as

q�,L − �

L
≤ k�

L
≤ q�,L (11.7)
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for the choice

q�,L = 1 − 2 �
L − δ

log L
L

1 + δ log L
�

(11.8)

we see that k�
L converges to one as � → ∞ only along a subsequence where

�

L
→ 0 and

log L

�
→ 0. (11.9)

Taking this into account, let ε > 0 be given and �1 be an initial scale to be determined.
Let L >> �1 be a positive integer to be interpreted as a larger scale. Iterating Eq. (11.6)
throughout a sequence of scales

�1 < �2 < · · · < �NL ≤ L < �NL+1 < · · · (11.10)

satisfying, for some p > 1,

p log
(
� j

) ≤ log � j+1 < p2 log
(
� j

)
. (11.11)

and

∞∑

j=1

� j

� j+1
< ∞ (11.12)

we reach, for q�,L defined in (11.8),

aL

L
≤

(

q�NL ,L +
2�NL

L

) NL−1∏

j=1

(

q� j ,� j+1 +
2� j

� j+1

)
a�1

�1
. (11.13)

Since q� j ,� j+1 → 1 as j → ∞ Due to (11.12), we conclude that the value of �1 can be
chosen(independently of L) so that

NL−1∑

j=1

log

(

q� j ,� j+1 +
2� j

� j+1

)

+ log

(

q�NL ,L +
2�NL

L

)

< ε. (11.14)

Thus

aL

L
≤ eε a�1

�1
. (11.15)

Moreover, the above conclusion holds for any integer �1 sufficiently large, as long and
L >> �1. In particular, we can also require that

a�1

�1
≤ inf

n

an

n
+ ε. (11.16)

Combining Eqs. (11.15) and (11.16) the proof is finished letting ε → 0.
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11.2. Proof of Lemma 11. Before proceeding with the proof, let us note that use will be
madeofHardynotation:C will be used for various constants depending on (η, g, ‖F‖∞).

Recall that U ( j) = ω( j) + gVeff(n), where the effective potential is defined in Z

according to Proposition 13. Without loss of generality, we may assume that m ≥ n,
in which case we let r = �δ logm� with δ > 0 to be determined. We will prove
the result with r replaced by 2r , for convenience. In order to find an upper bound for

E

(
|Ĝ(0, n + m + 2r; z)|s

)
we first estimate the conditional expectation below

E

(
|Ĝ(0, n + m + 2r; z)|s |ω( j) , j ∈ Z ∩ [−2r, n + m + 4r ]c

)
. (11.17)

Note that Ĝ(0, n + m + 2r; z) is a function of U (0), . . . , U (n + m + 2r). Let I =
[−2r, n + m + 4r ] and change variables in Rn+m+6r according to

TI (ω(−2r), . . . , ω(n + m + 4r)) := (U (−2r), . . . , U (n + m + 4r)) . (11.18)

The reason for changing the variables in a set slightly bigger than {0, 1, . . . , n + m +
2r} will be clear from the remainder of the proof. We may compute the conditional
expectation in (11.17) by integrating |Ĝ(0, n +m + 2r; z)|s with respect to the measure

∏

k∈I

ρ (U (k) − gVeff(k))JI×I dU (−2r) . . . dU (n + m + 4r)

:= �(UI , ωI c ) dU (−2r) . . . dU (n + m + 4r).

(11.19)

where

JI×I := det

(

I + g
∂Veff

∂U

)

I×I
(11.20)

under the convention

det

(

I + g
∂Veff

∂U

)

I×I
= det

(

δkl + g
∂Veff(k)

∂U (l)

)

k ∈ I ∩ Z, l ∈ I ∩ Z (11.21)

which will be used throughout the proof. We remark that, by definition, the above effec-
tive potential is calculated at specified values of ω( j), j ∈ Z∩ I c so, in the notation of
Lemmas 20 and 21 , Veff = Veff (UI , ωI c ).

When estimating (11.17) from above, the first step is to integrate out the random
variablesU (n+1) andU (n+2r)with the help of the local a-priori bound from Lemma 4
and the identity

Ĝ(0, n + m + 2r; z) = Ĝ(0, n; z)G[0,n+m+2r ](n + 1, n + 2r)Ĝ(n + 2r + 1, n + m + 2r; z).

We may conclude that

E

(
|Ĝ(0, n + m + 2r; z)|s |ω( j) , j ∈ Z ∩ I c

)

≤ CAPE

(
|Ĝ(0, n; z)|s |Ĝ(n + 2r + 1, n + 2r + m; z)|s |ω( j) , j ∈ Z ∩ I c

)

(11.22)
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where use was made of the fact that the variables U (n + 1) and U (n + 2r) do not enter
the product |Ĝ(0, n; z)|s |Ĝ(n + 2r + 1, n + 2r + m; z)|s . We will check below that the
expectation in (11.22) can be decoupled as follows:

E

(
|Ĝ(0, n; z)|s |Ĝ(n + 2r + 1, n + 2r + m; z)|s |ω( j) , j ∈ Z ∩ I c

)

≤ C2r+1
E

(
|Ĝ(0, n; z)|s | |ω( j) , j ∈ Z ∩ I c

)

E

(
Ĝ(n + 2r + 1, n + 2r + m; z)|s |ω( j) , j ∈ Z ∩ I c

)
.

(11.23)

The above will be a corollary of the deterministic inequality between densities defined
by (11.19)

�(UI , ωI c ) ≤ C2r+1�(UI1 , ŨI2 , ωI c )�(ŨI1 , UI2 , ωI c ) (11.24)

where I1 = [−2r, n + r ] ∩ Z and I2 = [n + r + 1, n + 4r + m] ∩ Z and {Ũ ( j)} j∈I is an
arbitrary list of numbers, more details on this inequality will be given below. Moreover,
we will prove that, given an arbitrary realization {ω̃( j)} j∈I c , the following holds true:

E

(
|Ĝ(0, n; z)|s | |ω( j) , j ∈ Z ∩ I c

)
≤ C2r+1

E

(
|Ĝ(0, n; z)|s | |ω̃( j) , j ∈ Z ∩ I c

)
.

(11.25)

where the above inequality will also follow from a deterministic bound on the densities,
namely:

�(UI , ωI c ) ≤ C2r+1�(UI , ω̃I c ). (11.26)

Lemma 11 follows from the bounds (11.22), (11.23) (combined with translation invari-
ance) and (11.25) by integrating over ωI c = {ω( j)} j∈I c and ω̃I c = {ω̃( j)} j∈I c once
we choose ω̃I c to be independent of ωI c , which can be done since in (11.25) ω̃I c is
an arbitrary list of real numbers. Indeed, we show next that the decoupling estimates
(11.23) and (11.25) follow from the deterministic estimates of Lemmas 20 and 21.

Let us start by proving (11.23). To estimate that conditional expectation, we recall the
change of variables (11.18) and control the Jacobian determinant in (11.20) and product
of densities in (11.19) as follows. Let

I1 = [−2r, n + r ] ∩ Z, I2 = [n + r + 1, n + m + 4r ] ∩ Z (11.27)

so that I = I1 ∪ I2. Split each of the intervals I1 and I2 according to I1 = I1,1 ∪ I1,2
and I2 = I2,1 ∪ I2,2 where

I1,1 = [−2r, n] ∩ Z, I1,2 = [n + 1, n + r ],
I2,1 = [n + r + 1, n + 2r ] ∩ Z, I2,2 = [n + 2r + 1, n + 4r + m] ∩ Z. (11.28)

We have that

JI×I ≤ CJI1×I1JI2×I2 . (11.29)

where the determinants on the right-hand side are defined as in (11.21). The above
inequality expresses the fact that the matrix entries which are relevant to computeJI×I
are close to the diagonal. Indeed, (11.29) follows from Lemma 22 and the exponential
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decay obtained in Lemma 14 (see also the remark below the proof of that lemma, which
shows that ∂Veff (i)

∂U ( j) has the same decay rate as ∂Veff (i)
∂ω( j) ).

The next goal is to decouple the determinants on the right-hand side of (11.29). For
that purpose, let {Ũ ( j)} j∈I be an arbitrary list of real numbers. With the notation of
Lemma 20, let Veff(UI1 , ŨI2 , ωI c ). Recall that this effective potential satisfies U (l) =
ω(l) + g

λ
Veff(UI1, ŨI2 , ωI c )(l) for l ∈ I1 and Ũ (k) = ω(k) + g

λ
Veff(UI1 , ŨI2 , ωI c )(k)

for k ∈ I2. Let JI1×I1(UI1, ŨI2 , ωI c ) be the Jacobian associated to Veff(UI1 , ŨI2 , ωI c ),
defined as in (11.20) with Veff replaced by Veff(UI1, ŨI2 , ωI c ). From now on we denote
the original JacobianJI1×I1 byJI1×I1(UI1 , UI2 , ωI c ) to avoid ambiguity.We claim that

JI1×I1(UI1 , UI2 , ωI c ) ≤ Cr+1JI1×I1(UI1 , ŨI2 , ωI c ). (11.30)

To verify (11.30), observe that, similarly as in (11.29), due to lemmas 22 and 14 we
have that JI1×I1(UI1 , UI2 , ωI c ) ≤ CJI1,1×I1,1(UI1, UI2 , ωI c )JI1,2×I1,2(UI1 , UI2 , ωI c ).
Moreover, due to Lemma 22, we know thatJI1,2×I1,2(UI1 , UI2 , ωI c ) ≤ Cr , since this is
a determinant of an r × r matrix with off-diagonal exponential decay. Hence,

JI1×I1(UI1 , UI2 , ωI c ) ≤ Cr+1JI1,1×I1,1(UI1 , UI2 , ωI c ). (11.31)

Due to Lemma 21(b), we have that, for l, j ∈ I1,

∣
∣∂Veff(UI1, UI2 , ωI c )(l)

∂U ( j)
− ∂Veff(UI1, ŨI2 , ωI c )(l)

∂U ( j)

∣
∣ ≤ Ce−ν(r+|l− j |). (11.32)

Due to Lemma 22 and (11.32), we have, for some constant C > 0

JI1,1×I1,1(UI1 , UI2 , ωI c ) ≤ Cne−νrJI1,1×I1,1(UI1 , ŨI2 , ωI c ). (11.33)

Since, by definition, r ≥ �δ log n�, we may conclude from (11.31) and (11.33) that for
a suitable choice of δ (for instance, δ ≥ 1

ν
suffices) we have

JI1×I1(UI1 , UI2 , ωI c ) ≤ Cr+1JI1,1×I1,1(UI1 , ŨI2 , ωI c ). (11.34)

Similar considerations as in (11.31) give

Cr+1JI1,1×I1,1(UI1 , ŨI2 , ωI c ) ≤ JI1×I1(UI1 , ŨI2 , ωI c ). (11.35)

The bound (11.30) follows from (11.34) and (11.35).
In a similar fashion,

JI2×I2(UI1 , UI2 , ωI c ) ≤ Cr+1JI2×I2(ŨI1 , UI2 , ωI c ) (11.36)

where we havemodifiedU in I1 and replaced Veff(UI1 , UI2 , ωI c ) by Veff(ŨI1 , UI2 , ωI c ).
Since the list ŨI1 = {Ũ (l)}l∈I1 was arbitrary, we may choose it to be independent of the
values UI1 = {U (l)}l∈I1 . In words, we have managed to estimate the determinant on the
larger scale by a product of two smaller determinants which are less correlated.

To obtain the analogous statement for the densities, we shall make use of the fluctu-
ation Assumption (2.4), which implies that, for some c > 0,
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ρ
(
U (k) − g

λ
Veff(UI1, UI2 , ωI c )(k)

)

ρ
(

U (k) − g
λ

Veff(UI1, ŨI2 , ωI c )(k)
) ≤ ec|Veff (UI1 ,UI2 ,ωI c )(k)−Veff (UI1 ,ŨI2 ,ωI c )(k)||U (k)|.

(11.37)

It follows from Lemma 20(b) that for k ∈ I1

|Veff(UI1, UI2 , ωI c )(k) − Veff,1(UI1 , ŨI2 , ωI c )(k)||U (k)| ≤ Ce−ν|k−(n+r+1)|.
(11.38)

Thus, from (11.37), we reach

∏

k∈I1

ρ
(
U (k) − g

λ
Veff(UI1 , UI2 , ωI c )(k)

)

ρ
(

U (k) − g
λ

Veff(UI1 , ŨI2 , ωI c )(k)
) ≤ C. (11.39)

Similarly,

∏

k∈I2

ρ
(
U (k) − g

λ
Veff(UI1 , UI2 , ωI c )(k)

)

ρ
(

U (k) − g
λ

Veff(ŨI1 , UI2 , ωI c )(k)
) ≤ C. (11.40)

The inequality (11.24) follows from the bounds on determinants (11.29), (11.30)
and (11.36) combined with the density bounds (11.39) and (11.40). Since Ĝ(0, n; z)
is a function of U (0), . . . , U (n + r) and Ĝ(n + r + 1, n + r + m; z) is a function of
U (n + r +1), . . . , U (n + r +m) we obtain the decoupling estimate (11.23) from (11.24).
The inequalities (11.26) and (11.25) can be proven similarly, by comparing Veff (ŨI , ωI c )

to Veff(ŨI1 , ω̃I c ) instead and making use of Lemmas 20(a) and 21(a).

12. Hölder Continuity for the Integrated Density of States at Weak Interaction

In this section we shall address the problem of Hölder continuity for the integrated
density of states of the Hubbard model with respect to energy, disorder and interaction.
Our results follow frommodifications of the methods in [18] and references therein after
we have established the existence of a suitable conditional density as in Lemma 5.

Let’s now prove Theorem 3, starting from Hölder continuity with respect to energy,
Eq. (2.13). We proceed as in [18, Section 2]. For simplicity, we replace HHub by H
defined in (4.1). The arguments given below will apply directly to H↑ and H↓ and,
therefore, suffice to show the same result for HHub.

Since the interval K is compact, it suffices to show that Nλ,g is locally Hölder
continuous in K . For that purpose, let E ∈ K be an arbitrary point in the interior of K
and fix an energy interval I of length ε > 0 centered at E ∈ R. The idea is to use the
Hölder continuity of N0 and the resolvent identity to reach the following inequality for
ε << 1 and |I | = ε, where we denote by P�(I ) the spectral projection of H� on the
interval I .

(1 − o(ε))E (TrP�(I )) ≤ C(I, ρ)εα|�|. (12.1)

Dividing both sides of (12.1) by |�| and letting |�| → ∞ gives (2.13). To obtain
(12.1) we fix an interval J containing I with |J | to be determined. We then write, with
P0,�(J ) = P

(
H�
0

)
(J ),

Tr(P�(I )) = Tr(P�(I )P0,�(J )) + Tr(P�(I )P0,�(J c)). (12.2)
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Note

Tr(P�(I )P0,�(J )) ≤ Tr(P0,�(J )). (12.3)

The above inequality combined with to the Hölder continuity of N0 with respect to
E ∈ R

|N0(E) − N0(E ′)| ≤ C(I, d)|E − E ′|α0 . (12.4)

yields, for |�| sufficiently large depending only on J ,

Tr(P�(I )P0,�(J )) ≤ C(J, d)|J |α0 |�|. (12.5)

We now estimate the second term on the left-hand side of Eq. (12.2). By the resolvent
identity,

Tr
(
P�(I )P0,�(J c)

) = Tr
(

P�(I )(H − E)P0,�(J c)(H0,� − E)−1
)

−λTr
(

P�(I )U� P0,�(J c)(H0,� − E)−1
)

. (12.6)

Where we have written U = Vω + g
λ

Veff . Moreover, using using functional calculus and
that E is the center of I , we estimate the first term on the left-hand side of Eq. (12.6)
by

Tr
(
(P�(I ))(H� − E)P0,�(J c)(H0,� − E)−1

)
≤ |I |

|J | − |I |Tr(P�(I )). (12.7)

Now, the second term in in Eq. (12.6) can be controlled by means of

− λTr
(

P�(I )U� P0,�(J c)(H0,� − E)−1
)

= −λTr
(
(H� − E)(P�(I ))U� P0,�(J c)(H0,� − E)−2

)

+ λ2Tr
(

U�(P�(I ))U� P0,�(J c)(H0,� − E)−2
)

.

= A + B

Now, because U� is unbounded, we continue a slight modification of the argument in
[18]. The only difference is that we bound term (A) above (which corresponds to [18,
(iii) in equation (2.6)]) as

|Tr
(
(H� − E)(P�(I ))U� P0,�(J c)(H0,� − E)−2

)
| ≤ |I |

(|J | − |I |)2 |Tr (P�(I )U�
) |.

(12.8)

At this point, with an estimate analogous to the one in the proof of Proposition 3.2 in
[9] we reach

E (|TrP�(I )Vω|) ≤ λ−1 sup
m∈N

{ ∫ (m+1)ε

mε

ω jρ(ω j ) dω j

}
|�| , ε = |I |. (12.9)
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Thus, with M1(ε) := supm∈N
{ ∫ (m+1)ε

mε
ω jρ(ω j ) dω j

}
,

λ|Tr(H� − E)P�(I )U� P0,�(J c)(H�
0 − E)−2| ≤ λ|I |

(|J | − |I |)2 (
M1(ε)

λ
+

g‖F‖∞
λ

)|�|.
(12.10)

Similarly,with M2(ε) := supm∈N
{ ∫ (m+1)ε

mε
ω2

jρ(ω j ) dω j

}
,we estimate term (B) through

λ2|TrU�(P�(I ))U� P0,�(J c)(H0,� − E)−2|
≤ 4λ2

(|J | − |I |)2
(

M2(ε)

λ
|�| + g2

λ2
Tr(P�(I ))

)

. (12.11)

Due Lemma 5 and the Wegner estimate (see [5, theorem 4.1]) we conclude that

Tr(P�(I )) ≤ C

λ
|I ||�|. (12.12)

Choosing the interval J such that |J | = εδ for δ < 1, keeping in mind the assumption
g2 < λ, combining the bounds (12.5), (12.7), (12.10), (12.11), (12.12) and optimizing
over δ gives δ = 1

2+α0
. Therefore, we reach (12.1) for α ∈ [0, α0

2+α0
] and (2.13) is proven.

To show (I DS2) we follow the proof of theorem 1.2 in [18]. We fix λ, λ′ ∈ J and
E ∈ IntK . As explained in [18], using Hölder continuity with respect to energy given
by Eq. (2.13), trace identities and ergodicity of Hλ,g and Hλ′,g′ , it suffices to estimate
E

(
TrP0ϕ(Hλ,g)(ϕ(Hλ,g) − ϕ(Hλ′,g′))P0

)
where ϕ is a smooth function such that

⎧
⎨

⎩

ϕ ≡ 1 on (−∞, E],
ϕ ≡ 0 on (−∞, E + |λ − λ′|δ + |g − g′|δ)c,

‖ϕ( j)‖∞ ≤ C
(|λ − λ′|δ + |g − g′|δ)− j

, j = 1, 2 . . . , 3d + 4
(12.13)

with δ > 0 to be determined. The need for a high regularity of ϕ is due to the fact that
the random potential Vω may be unbounded. Let ϕ̃ be an almost analytic extension of ϕ

of order 3 + 3d. In particular, ϕ̃ is defined in a complex neighborhood of the support of
ϕ and if z = E + iη we have that

|∂z ϕ̃(z)| ≤ |η|3d+3|ϕ(3d+4)(E)|. (12.14)

By the Helffer-Sjöstrand formula,

Tr
(
P0ϕ(Hλ,g)(ϕ(Hλ,g) − ϕ(Hλ′,g′))P0

)

= 1

π

∫

C

∂z ϕ̃ TrP0ϕ(Hλ,g)Rλ,g(z)
(
λ′Uλ′,g′ − λUλ,g

)
Rλ′,g′(z)P0 d2z

= (λ′ − λ)

π

∫

C

∂z ϕ̃ TrP0ϕ(Hλ,g)Rλ,g(z)Vω Rλ′,g′(z)P0 d2z

+
(g′ − g)

π

∫

C

∂z ϕ̃ TrP0ϕ(Hλ,g)Rλ,g(z)Veff,λ(g)Rλ′,g′(z)P0 d2z

+
g′

π

∫

C

∂z ϕ̃ TrP0ϕ(Hλ,g)Rλ,g(z)
(
Veff,λ′(g′) − Veff,λ(g)

)
Rλ′,g′(z)P0 d2z.
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Since the last two terms enjoy a better modulus of Hölder continuity (since they do not
involve Vω) and can be treated as in [18], we shall only estimate the first of the above
integrals. By the resolvent identity,

Rλ,g(z)Vω Rλ′,g′(z) = Rλ,g(z)Vω Rλ,g(z) + (λ′ − λ)Rλ,g(z)Vω Rλ′,g′(z)Vω Rλ,g(z)

+ (g′ − g)Rλ,g(z)Vω Rλ′,g′(z)Veff,λ′(g′)Rλ,g(z)

+ gRλ,g(z)Vω Rλ′,g′(z)(Veff,λ′(g′) − Veff,λ(g))Rλ,g(z).

The above considerations lead to a perturbative expansion of
(λ′−λ)

π

∫
C

∂z ϕ̃ TrP0ϕ(Hλ,g)Rλ,g(z)Vω Rλ′,g′(z)P0 d2z into four terms. We will show be-
low that each of them can be bounded in terms of powers of either |λ − λ′| or |g − g′|.
We start by estimating E

(∣
∣
∣
(λ−λ′)2

π

∫
C

∂z ϕ̃ TrP0ϕ(Hλ,g)Rλ,g(z)Vω Rλ′,g′(z)Vω Rλ,g(z)

P0 d2z
∣
∣
∣
)
with a slight modification of equation (3.15) in [18] since Vω is unbounded.

By the Combes–Thomas bound, Eq. (12.14) and the choice of ϕ

E

(∣
∣
∣
(λ − λ′)2

π

∫

C

∂z ϕ̃ TrP0ϕ(Hλ,g)Rλ,g(z)Vω Rλ′,g′(z)Vω Rλ,g(z)P0 d2z
∣
∣
∣

)

≤ C(d)
(
1 + E

2(|Vω|)
) |λ − λ′|2

(|λ − λ′|δ + |g − g′|δ)3d+4 .

Similarly,

E

(∣
∣
∣
(λ − λ′)(g − g′)

π
∫

C

∂z ϕ̃ TrP0ϕ(Hλ,g)Rλ,g(z)Veff,λ′(g′)Rλ′,g′(z)Vω Rλ,g(z)P0 d2z
∣
∣
∣

)

≤ C(d) (1 + E(|Vω|)) |λ − λ′||g − g′|
(|λ − λ′|δ + |g − g′|δ)3d+4 .

Moreover, using Lemma 17 with the the explicit dependence onω given there, we obtain

E

(∣
∣
∣
g(λ − λ′)

π

∫

C

∂z ϕ̃ TrP0ϕ(Hλ,g)Rλ,g(z)Vω Rλ′,g′(z)(Veff,λ′(g′)

−Veff,λ(g))Rλ,g(z)P0 d2z
∣
∣
∣
)

≤ C(d) (1 + E(|Vω|)) |g||λ − λ′|(|g − g′| + |λ − λ′|)
(|λ − λ′|δ + |g − g′|δ)3+3d

.

Using the same arguments as in [18, Equations 3.17 and 3.18] we see that

∣
∣
∣
(λ′ − λ)

π

∫

C

∂z ϕ̃ TrP0ϕ(Hλ,g)Rλ,g(z)Vω Rλ′,g′(z)P0 d2z
∣
∣
∣

can be bounded from above by
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|λ − λ′||E (
Tr(P0ϕ(Hλ,g)Rλ,g(z)Vω Rλ,g(z)P0)

) | ≤ C |λ − λ′|E (|Vω|)
(|λ − λ′|δ + |g − g′|δ) .

(12.15)

Finally, we conclude that |Nλ,g(E) − Nλ′,g′(E)| is bounded from above by

C(α0, d, J, K )
(
|λ − λ′|δα + |g − g′|δα + |λ − λ′|2−(3d+4)δ

+|g − g′|2−(3d+4)δ + |λ − λ′|1−δ + |g − g′|1−δ
)

.

Choosing δ = 2
α+3d+4 we obtain, for any β ∈ [0, 2

α+3d+4 ],
|Nλ,g(E) − Nλ′,g′(E)| ≤ C(α0, d, J, K )

(|λ − λ′|β + |g − g′|β)

finishing the proof of Theorem 3.
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